Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2625-2023
https://doi.org/10.5194/nhess-23-2625-2023
Research article
 | 
24 Jul 2023
Research article |  | 24 Jul 2023

Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine

Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan

Related authors

Low cost, multiscale and multi-sensor application for flooded area mapping
Daniele Giordan, Davide Notti, Alfredo Villa, Francesco Zucca, Fabiana Calò, Antonio Pepe, Furio Dutto, Paolo Pari, Marco Baldo, and Paolo Allasia
Nat. Hazards Earth Syst. Sci., 18, 1493–1516, https://doi.org/10.5194/nhess-18-1493-2018,https://doi.org/10.5194/nhess-18-1493-2018, 2018
Short summary
A MULTI-SOURCE DATA APPROACH FOR THE INVESTIGATION OF LAND SUBSIDENCE IN THE KONYA BASIN, TURKEY
F. Calò, D. Notti, J. P. Galve, S. Abdikan, T. Görüm, O. Orhan, H. B. Makineci, A. Pepe, M. Yakar, and F. Balik Şanli
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W4, 129–135, https://doi.org/10.5194/isprs-archives-XLII-3-W4-129-2018,https://doi.org/10.5194/isprs-archives-XLII-3-W4-129-2018, 2018

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

ARPA Piemonte: Gli eventi alluvionali in Piemonte – Evento del 21–25 novembre 2016, Turin, http://www.arpa.piemonte.it/pubblicazioni-2/gli-eventi-alluvionali-in-piemonte (last access: 28 April 2023), 2018. 
Bellugi, D. G., Milledge, D. G., Cuffey, K. M., Dietrich, W. E., and Larsen, L. G.: Controls on the size distributions of shallow landslides, P. Natl. Acad. Sci. USA, 118, e2021855118, https://doi.org/10.1073/pnas.2021855118, 2021. 
Benesty, J., Chen, J., Huang, Y., and Cohen, I.: Pearson Correlation Coefficient, in: Noise Reduction in Speech Processing, edited by: Cohen, I., Huang, Y., Chen, J., and Benesty, J., Springer Berlin Heidelberg, Berlin, Heidelberg, 1–4, https://doi.org/10.1007/978-3-642-00296-0_5, 2009. 
Bhuyan, K., Tanyaş, H., Nava, L., Puliero, S., Meena, S. R., Floris, M., van Westen, C., and Catani, F.: Generating multi-temporal landslide inventories through a general deep transfer learning strategy using HR EO data, Sci. Rep.​​​​​​​, 13, 162, https://doi.org/10.1038/s41598-022-27352-y, 2023. 
Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., and Chersich, S.: Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis, Eng. Geol., 193, 19–37, https://doi.org/10.1016/j.enggeo.2015.04.006, 2015. 
Download
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Altmetrics
Final-revised paper
Preprint