Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2625-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2625-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
Davide Notti
Institute for Geo-Hydrological Protection (IRPI), Italian National
Research Council (CNR), Strada Delle Cacce 73, 10135 Turin, Italy
Martina Cignetti
Institute for Geo-Hydrological Protection (IRPI), Italian National
Research Council (CNR), Strada Delle Cacce 73, 10135 Turin, Italy
Institute for Geo-Hydrological Protection (IRPI), Italian National
Research Council (CNR), Strada Delle Cacce 73, 10135 Turin, Italy
Daniele Giordan
Institute for Geo-Hydrological Protection (IRPI), Italian National
Research Council (CNR), Strada Delle Cacce 73, 10135 Turin, Italy
Related authors
No articles found.
Fabrizio Troilo, Niccolò Dematteis, Francesco Zucca, Martin Funk, and Daniele Giordan
The Cryosphere, 18, 3891–3909, https://doi.org/10.5194/tc-18-3891-2024, https://doi.org/10.5194/tc-18-3891-2024, 2024
Short summary
Short summary
The study of glacier sliding along slopes is relevant in many aspects of glaciology. We processed Sentinel-2 satellite optical images of Mont Blanc, obtaining surface velocities of 30 glaciers between 2016 and 2024. The study revealed different behaviours and velocity variations that have relationships with glacier morphology. A velocity anomaly was observed in some glaciers of the southern side in 2020–2022, but its origin needs to be investigated further.
Diego Guenzi, Danilo Godone, Paolo Allasia, Nunzio Luciano Fazio, Michele Perrotti, and Piernicola Lollino
Nat. Hazards Earth Syst. Sci., 22, 207–212, https://doi.org/10.5194/nhess-22-207-2022, https://doi.org/10.5194/nhess-22-207-2022, 2022
Short summary
Short summary
In the Apulia region (southeastern Italy) we are monitoring a soft-rock coastal cliff using webcams and strain sensors. In this urban and touristic area, coastal recession is extremely rapid and rockfalls are very frequent. In our work we are using low-cost and open-source hardware and software, trying to correlate both meteorological information with measures obtained from crack meters and webcams, aiming to recognize potential precursor signals that could be triggered by instability phenomena.
Cited articles
ARPA Piemonte: Gli eventi alluvionali in Piemonte – Evento del 21–25 novembre 2016, Turin, http://www.arpa.piemonte.it/pubblicazioni-2/gli-eventi-alluvionali-in-piemonte
(last access: 28 April 2023), 2018.
Bellugi, D. G., Milledge, D. G., Cuffey, K. M., Dietrich, W. E., and
Larsen, L. G.: Controls on the size distributions of shallow landslides,
P. Natl. Acad. Sci. USA, 118, e2021855118, https://doi.org/10.1073/pnas.2021855118, 2021.
Benesty, J., Chen, J., Huang, Y., and Cohen, I.: Pearson Correlation
Coefficient, in: Noise Reduction in Speech Processing, edited by: Cohen, I.,
Huang, Y., Chen, J., and Benesty, J., Springer Berlin Heidelberg, Berlin,
Heidelberg, 1–4, https://doi.org/10.1007/978-3-642-00296-0_5, 2009.
Bhuyan, K., Tanyaş, H., Nava, L., Puliero, S., Meena, S. R., Floris, M.,
van Westen, C., and Catani, F.: Generating multi-temporal landslide
inventories through a general deep transfer learning strategy using HR EO
data, Sci. Rep., 13, 162, https://doi.org/10.1038/s41598-022-27352-y, 2023.
Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., and Chersich,
S.: Hydrological factors affecting rainfall-induced shallow landslides: from
the field monitoring to a simplified slope stability analysis, Eng.
Geol., 193, 19–37, https://doi.org/10.1016/j.enggeo.2015.04.006, 2015.
Borrelli, L., Cofone, G., Coscarelli, R., and Gullà, G.: Shallow
landslides triggered by consecutive rainfall events at Catanzaro strait
(Calabria–Southern Italy), J. Maps, 11, 730–744,
https://doi.org/10.1080/17445647.2014.943814, 2015.
Caine, N.: The rainfall intensity-duration control of shallow landslides and
debris flows, Geogr. Ann. A, 62, 23–27, 1980.
Cardinali, M., Ardizzone, F., Galli, M., Guzzetti, F., and Reichenbach, P.:
Landslides triggered by rapid snow melting: the December 1996–January 1997
event in Central Italy, in: Proceedings 1st Plinius Conference on
Mediterranean Storms, 14–16 October 1999, Maratea, Editoriale Bios, Cosenza, 439–448, ISBN 9788877402967, 2000.
Carrara, A.: Uncertainty in Evaluating Landslide Hazard and Risk, in:
Prediction and Perception of Natural Hazards: Proceedings Symposium, 22–26 October 1990, Perugia, Italy, edited by: Nemec, J., Nigg, J. M., and
Siccardi, F., Springer Netherlands, Dordrecht, 101–109,
https://doi.org/10.1007/978-94-015-8190-5_12, 1993.
Catani, F.: Landslide detection by deep learning of non-nadiral and
crowdsourced optical images, Landslides, 18, 1025–1044, 2021.
Cevasco, A., Pepe, G., and Brandolini, P.: The influences of geological and
land use settings on shallow landslides triggered by an intense rainfall
event in a coastal terraced environment, B. Eng. Geol. Environ., 73, 859–875, https://doi.org/10.1007/s10064-013-0544-x, 2014.
Cignetti, M., Godone, D., and Giordan, D.: Shallow landslide susceptibility,
Rupinaro catchment, Liguria (northwestern Italy), J. Maps, 15, 1–13,
https://doi.org/10.1080/17445647.2019.1593252, 2019.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Copernicus Climate Change Service:
https://climate.copernicus.eu/ESOTC/2019/wet-end-year-western-and-southern-europe
(last access: 29 April 2022), 2019.
Copernicus Open Access Hub: ESA, https://scihub.copernicus.eu/ (last access: 28 April 2023), 2023.
Cremonini, R. and Tiranti, D.: The weather radar observations applied to
shallow landslides prediction: a case study from north-western Italy,
Front. Earth Sci., 6, 134, https://doi.org/10.3389/feart.2018.00134, 2018.
D'Amato Avanzi, G., Galanti, Y., Giannecchini, R., and Bartelletti, C.:
Shallow Landslides Triggered by the 25 October 2011 Extreme Rainfall in
Eastern Liguria (Italy), in: Engineering Geology for Society and Territory –
Volume 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J.,
Azzam, R., Wasowski, J., and Sciarra, N., Springer International Publishing,
Cham, 515–519, https://doi.org/10.1007/978-3-319-09057-3_85, 2015.
Ferrari, F., Cassola, F., Tuju, P. E., and Mazzino, A.: RANS and LES face to
face for forecasting extreme precipitation events in the Liguria region
(northwestern Italy), Atmos. Res., 259, 105654,
https://doi.org/10.1016/j.atmosres.2021.105654, 2021.
Fiorucci, F., Cardinali, M., Carlà, R., Rossi, M., Mondini, A. C.,
Santurri, L., Ardizzone, F., and Guzzetti, F.: Seasonal landslide mapping
and estimation of landslide mobilization rates using aerial and satellite
images, Geomorphology, 129, 59–70,
https://doi.org/10.1016/j.geomorph.2011.01.013, 2011.
Fiorucci, F., Giordan, D., Santangelo, M., Dutto, F., Rossi, M., and Guzzetti, F.: Criteria for the optimal selection of remote sensing optical images to map event landslides, Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018, 2018.
Fiorucci, F., Ardizzone, F., Mondini, A. C., Viero, A., and Guzzetti, F.:
Visual interpretation of stereoscopic NDVI satellite images to map
rainfall-induced landslides, Landslides, 16, 165–174,
https://doi.org/10.1007/s10346-018-1069-y, 2019.
Fratianni, S. and Acquaotta, F.: The climate of Italy, Landscapes and
landforms of Italy, Springer, 29–38, https://doi.org/10.1007/978-3-319-26194-2_4, 2017.
Gallus Jr., W. A., Parodi, A., and Maugeri, M.: Possible impacts of a
changing climate on intense Ligurian Sea rainfall events, Int.
J. Climatol., 38, e323–e329, https://doi.org/10.1002/joc.5372, 2018.
Ganerød, A. J., Lindsay, E., Fredin, O., Myrvoll, T.-A., Nordal, S., and
Rød, J. K.: Globally- vs. Locally-trained Machine Learning Models for
Land-slide Detection: A Case Study of a Glacial Landscape, Remote Sens.,
15, 895, https://doi.org/10.3390/rs15040895, 2023.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate,
Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
GEE Timeseries Explorer:
https://geetimeseriesexplorer.readthedocs.io/en/latest/ (last access: 28 April 2023), 2020.
Ghorbanzadeh, O., Crivellari, A., Ghamisi, P., Shahabi, H., and Blaschke,
T.: A comprehensive transferability evaluation of U-Net and ResU-Net for
landslide detection from Sentinel-2 data (case study areas from Taiwan,
China, and Japan), Sci. Rep., 11, 14629, https://doi.org/10.1038/s41598-021-94190-9, 2021.
Giordan, D., Cignetti, M., Baldo, M., and Godone, D.: Relationship between
man-made environment and slope stability: the case of 2014 rainfall events
in the terraced landscape of the Liguria region (northwestern Italy), Geomat. Nat. Hazards Risk, 8, 1833–1852, https://doi.org/10.1080/19475705.2017.1391129, 2017.
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore,
R.: Google Earth Engine: Planetary-scale geospatial analysis for everyone,
Remote Sens. Environ., 202, 18–27, https://doi.org/10.1016/j.rse.2017.06.031, 2017.
Govi, M.: Gli eventi alluvionali del 1977 in Piemonte: problemi di
protezione idrogeologica, in: Proc. Conf. “Pianificazione territoriale e
geologia”, Regione Piemonte – Dip. Organizzazione e gestione territorio e
Assessorato Pianificazione Territorio, 14 April 1978, Turin, 37–45, 1978.
Guzzetti, F., Malamud, B. D., Turcotte, D. L., and Reichenbach, P.:
Power-law correlations of landslide areas in central Italy, Earth Planet. Sc. Lett., 195, 169–183, https://doi.org/10.1016/S0012-821X(01)00589-1, 2002.
Guzzetti, F., Cardinali, M., Reichenbach, P., Cipolla, F., Sebastiani, C.,
Galli, M., and Salvati, P.: Landslides triggered by the 23 November 2000
rainfall event in the Imperia Province, Western Liguria, Italy, Eng.
Geol., 73, 229–245, https://doi.org/10.1016/j.enggeo.2004.01.006, 2004.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., and Galli, M.:
Estimating the quality of landslide susceptibility models, Geomorphology,
81, 166–184, 2006.
Hafen, C.: How to Add Google Satellite Imagery and Google Maps to QGIS, Open source options, https://opensourceoptions.com/blog/how-to-add-google-satellite-imagery-and-google-maps-to-qgis/, (last access: 28 April 2023), 2022.
Handwerger, A. L., Huang, M.-H., Jones, S. Y., Amatya, P., Kerner, H. R., and Kirschbaum, D. B.: Generating landslide density heatmaps for rapid detection using open-access satellite radar data in Google Earth Engine, Nat. Hazards Earth Syst. Sci., 22, 753–773, https://doi.org/10.5194/nhess-22-753-2022, 2022.
Hölbling, D., Friedl, B., and Eisank, C.: An object-based approach for
semi-automated landslide change detection and attribution of changes to
landslide classes in northern Taiwan, Earth Sci. Inform., 8, 327–335, 2015.
IPCC: Intergovernmental Panel on Climate Change: Climate Change 2014:
Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pachauri, R. and Meyer, L., IPCC, Geneva, Switzerland, p. 151,
ISBN 978-92-9169-143-2, 2014.
Land Cover Piemonte:
https://www.geoportale.piemonte.it/geonetwork/srv/api/records/r_piemon:006cb751-4274-4ac3-a5bd-5bb3f1bbd251, last access: 8 June 2022.
Lanteaume, M., Radulescu, N., Gravos, M., Feraud, J., Faure-Muret, A., and
Haccard, D.: Notice explicative, Carte Géologique de France (1 / 50 000), feuille Viève-Tende (948), Bureau de Recherches Géologiques et Minières, Orléans, ISBN 2-7159-1948-4, 1990.
Lindsay, E., Frauenfelder, R., Rüther, D., Nava, L., Rubensdotter, L.,
Strout, J., and Nordal, S.: Multi-Temporal Satellite Image Composites in
Google Earth Engine for Improved Landslide Visibility: A Case Study of a
Glacial Landscape, Remote Sens., 14, 2301, https://doi.org/10.3390/rs14102301, 2022.
Lu, P., Qin, Y., Li, Z., Mondini, A. C., and Casagli, N.: Landslide mapping
from multi-sensor data through improved change detection-based Markov random
field, Remote Sens. Environ., 231, 111235, https://doi.org/10.1016/j.rse.2019.111235, 2019.
Luino, F.: The flood and landslide event of November 4–6 1994 in Piedmont
Region (Northwestern Italy): Causes and related effects in Tanaro Valley,
Phys. Chem. Earth A, 24, 123–129, https://doi.org/10.1016/S1464-1895(99)00007-1, 1999.
Mandarino, A., Luino, F., and Faccini, F.: Flood-induced ground effects and
flood-water dynamics for hydro-geomorphic hazard assessment: the 21–22 October 2019 extreme flood along the lower Orba River (Alessandria, NW
Italy), J. Maps, 17, 136–151, https://doi.org/10.1080/17445647.2020.1866702,
2021.
Martha, T. R., Kerle, N., Jetten, V., van Westen, C. J., and Kumar, K. V.:
Characterising spectral, spatial and morphometric properties of landslides
for semi-automatic detection using object-oriented methods, Geomorphology,
116, 24–36, https://doi.org/10.1016/j.geomorph.2009.10.004, 2010.
MASE: Ortofoto a colori anno 2012 (RGB orthophoto year 2012), Geoportale Nazionale, MASE – Ministero dell'ambiente e della sicurezza energetica, http://www.pcn.minambiente.it/mattm/servizio-wms/ (last access: 28 April 2023), 2012.
Mercalli, L.: NUBIFRAGI DEL 21 OTTOBRE 2019 NELL'ALESSANDRINO – Redazione Nimbus – 22 November 2019, http://www.nimbus.it/eventi/2019/191021NubifragiAlessandrino.htm (last access: 28 April 2023), 2019.
Meteologix:
https://meteologix.com/it/precipitation/alessandria/calibrated-precipitation-total-6h/20191021-2050z.html,
last access: 27 May 2022.
Mohan, A., Singh, A. K., Kumar, B., and Dwivedi, R.: Review on remote
sensing methods for landslide detection using machine and deep learning,
T. Emerg. Telecommun. T., 32, e3998, https://doi.org/10.1002/ett.3998, 2021.
Mondini, A. C., Guzzetti, F., Reichenbach, P., Rossi, M., Cardinali, M., and
Ardizzone, F.: Semi-automatic recognition and mapping of rainfall induced
shallow landslides using optical satellite images, Remote Sens. Environ., 115, 1743–1757, https://doi.org/10.1016/j.rse.2011.03.006, 2011.
Nava, L., Bhuyan, K., Meena, S. R., Monserrat, O., and Catani, F.: Rapid
Mapping of Landslides on SAR Data by Attention U-Net, Remote Sens., 14,
1449, https://doi.org/10.3390/rs14061449, 2022.
Nimbus Web Eventi Meteorologici:
http://www.nimbus.it/eventi/2016/161125AlluvioniNordOvest.htm, last access: 10 June 2022.
Notti, D., Wrzesniak, A., Dematteis, N., Lollino, P., Fazio, N. L., Zucca,
F., and Giordan, D.: A multidisciplinary investigation of deep-seated
landslide reactivation triggered by an extreme rainfall event: a case study
of the Monesi di Mendatica landslide, Ligurian Alps, Landslides, 18, 1–25,
https://doi.org/10.1007/s10346-021-01651-3, 2021.
Notti, D., Cignetti, M., Godone, D., and Giordan, D.: Semi-automatic and
manual shallow landslide inventories of two extreme rainfall events, Zenodo [data set], https://doi.org/10.5281/zenodo.8164752, 2022.
Nowak, B., Marliac, G., and Michaud, A.: Estimation of winter soil cover by
vegetation before spring-sown crops for mainland France using multispectral
satellite imagery, Environ. Res. Lett., 16, 064024, https://doi.org/10.1088/1748-9326/ac007c, 2021.
Paliaga, G. and Parodi, A.: Geo-Hydrological Events and Temporal Trends in
CAPE and TCWV over the Main Cities Facing the Mediterranean Sea in the
Period 1979–2018, Atmosphere, 13, 47, https://doi.org/10.3390/atmos13010089, 2022.
Pepe, G., Piazza, M., and Cevasco, A.: Geomechanical characterization of a
highly heterogeneous flysch rock mass by means of the GSI method, B. Eng. Geol. Environ., 74, 465–477, https://doi.org/10.1007/s10064-014-0642-4, 2015.
Pepe, G., Mandarino, A., Raso, E., Cevasco, A., Firpo, M., and Casagli, N.:
Extreme Flood and Landslides Triggered in the Arroscia Valley (Liguria
Region, Northwestern Italy) During the November 2016 Rainfall Event, in: vol. 1, IAEG/AEG Annual Meeting Proceedings, 17–21 September 2018, San Francisco, California, 171–175, ISBN 978-3-319-93124-1, https://doi.org/10.1007/978-3-319-93124-1_21, 2019.
Piana, F., Fioraso, G., Irace, A., Mosca, P., d'Atri, A., Barale, L.,
Falletti, P., Monegato, G., Morelli, M., Tallone, S., and Vigna, G. B.:
Geology of Piemonte region (NW Italy, Alps–Apennines interference zone), J. Maps, 13, 395–405, https://doi.org/10.1080/17445647.2017.1316218, 2017.
Prakash, N., Manconi, A., and Loew, S.: A new strategy to map landslides
with a generalized convolutional neural network, Sci. Rep., 11,
1–15, 2021.
QGIS Association: QGIS Geographic Information System. QGIS
Association, http://qgis.org (last access: 28 April 2023), 2022.
Qin, Y., Lu, P., and Li, Z.: LANDSLIDE INVENTORY MAPPING FROM BITEMPORAL 10 m SENTINEL-2 IMAGES USING CHANGE DETECTION BASED MARKOV RANDOM FIELD, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 1447–1452, https://doi.org/10.5194/isprs-archives-XLII-3-1447-2018, 2018.
R Core Team: R: A language and environment for statistical computing, https://www.R-project.org/ (last access: 28 April 2023), 2020.
Regione Liguria: DTM – MODELLO DIGITALE DEL TERRENO – LIGURIA ED, https://srvcarto.regione.liguria.it/geoservices/apps/viewer/pages/apps/download/index.html?id=2056 (last access: 28 April 2023), 2022.
Regione Piemonte: RIPRESA AEREA ICE 2009–2011 – DTM 5, https://www.geoportale.piemonte.it/geonetwork/srv/eng/catalog.search#/metadata/r_piemon:224de2ac-023e-441c-9ae0-ea493b217a8e (last access: 28 April 2023), 2011.
Regione Piemonte: AGEA 2018 – Ortofoto RGB – Geoservizi WMS e WMTS, https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:98fe6c87-2721-4193-a35a-5af883badce7 (last access: 28 April 2023), 2020.
Regione Piemonte: Flood events 2019,
http://www.sistemapiemonte.it/eXoRisorse/dwd/servizi/EventiAlluvionali/novembre2019/OCn3-A18-615-622-del-06042020.pdf,
last access: 13 August 2021.
Roccati, A., Faccini, F., Luino, F., Turconi, L., and Guzzetti, F.: Rainfall events with shallow landslides in the Entella catchment, Liguria, northern Italy, Nat. Hazards Earth Syst. Sci., 18, 2367–2386, https://doi.org/10.5194/nhess-18-2367-2018, 2018.
Roccati, A., Paliaga, G., Luino, F., Faccini, F., and Turconi, L.: Rainfall
Threshold for Shallow Landslides Initiation and Analysis of Long-Term
Rainfall Trends in a Mediterranean Area, Atmosphere, 11, 1367,
https://doi.org/10.3390/atmos11121367, 2020.
Rossi, M., Guzzetti, F., Reichenbach, P., Mondini, A. C., and Peruccacci,
S.: Optimal landslide susceptibility zonation based on multiple forecasts,
Geomorphology, 114, 129–142, https://doi.org/10.1016/j.geomorph.2009.06.020, 2010.
Sassa, K., Fukuoka, H., Scarascia-Mugnozza, G., and Evans, S.:
Earthquake-induced-landslides: distribution, motion and mechanisms, Soils
Found., 36, 53–64, https://doi.org/10.1016/j.sandf.2014.06.001, 1996.
Scheip, C. M. and Wegmann, K. W.: HazMapper: a global open-source natural hazard mapping application in Google Earth Engine, Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, 2021.
Terrell, G. R. and Scott, D. W.: Variable kernel density estimation, Ann. Stat., 20, 1236–1265, 1992.
Trigila, A., Frattini, P., Casagli, N., Catani, F., Crosta, G., Esposito,
C., Iadanza, C., Lagomarsino, D., Mugnozza, G. S., and Segoni, S.: Landslide
susceptibility mapping at national scale: the Italian case study, Landslide
Science and Practice: Volume 1: Landslide Inventory and Susceptibility and
Hazard Zoning, Springer, Berlin, Heidelberg, 287–295, https://doi.org/10.1007/978-3-642-31325-7_38, 2013.
Yu, B., Chen, F., and Muhammad, S.: Analysis of satellite-derived landslide
at Central Nepal from 2011 to 2016, Environ. Earth Sci., 77, 331,
https://doi.org/10.1007/s12665-018-7516-1, 2018.
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
We developed a cost-effective and user-friendly approach to map shallow landslides using free...
Altmetrics
Final-revised paper
Preprint