Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2625-2023
https://doi.org/10.5194/nhess-23-2625-2023
Research article
 | 
24 Jul 2023
Research article |  | 24 Jul 2023

Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine

Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan

Data sets

Semi-automatic and manual shallow landslide inventories of two extreme rainfall events D. Notti, M. Cignetti, D. Godone, and D. Giordan https://doi.org/10.5281/zenodo.8164752

AGEA 2018 - Ortofoto RGB - Geoservizi WMS e WMTS Regione Piemonte https://www.geoportale.piemonte.it/geonetwork/srv/ita/catalog.search#/metadata/r_piemon:98fe6c87-2721-4193-a35a-5af883badce7

RIPRESA AEREA ICE 2009-2011 - DTM 5 Regione Piemonte https://www.geoportale.piemonte.it/geonetwork/srv/eng/catalog.search#/metadata/r_piemon:224de2ac-023e-441c-9ae0-ea493b217a8e

DTM - MODELLO DIGITALE DEL TERRENO - LIGURIA ED Regione Liguria https://srvcarto.regione.liguria.it/geoservices/apps/viewer/pages/apps/download/index.html?id=2056

Download
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Altmetrics
Final-revised paper
Preprint