Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-3019-2018
https://doi.org/10.5194/nhess-18-3019-2018
Research article
 | 
14 Nov 2018
Research article |  | 14 Nov 2018

Temporal evolution of flow-like landslide hazard for a road infrastructure in the municipality of Nocera Inferiore (southern Italy) under the effect of climate change

Marco Uzielli, Guido Rianna, Fabio Ciervo, Paola Mercogliano, and Unni K. Eidsvig

Related authors

High-resolution simulations with COSMO model including TERRA_URB TERRA_URB parameterization for the representation of Urban Heat Islands over South Italy
Edoardo Bucchignani and Paola Mercogliano
Adv. Sci. Res., 17, 19–22, https://doi.org/10.5194/asr-17-19-2020,https://doi.org/10.5194/asr-17-19-2020, 2020
Short summary
Physically based approaches incorporating evaporation for early warning predictions of rainfall-induced landslides
Alfredo Reder, Guido Rianna, and Luca Pagano
Nat. Hazards Earth Syst. Sci., 18, 613–631, https://doi.org/10.5194/nhess-18-613-2018,https://doi.org/10.5194/nhess-18-613-2018, 2018
Short summary
MATISSE: an ArcGIS tool for monitoring and nowcasting meteorological hazards
V. Rillo, A. L. Zollo, and P. Mercogliano
Adv. Sci. Res., 12, 163–169, https://doi.org/10.5194/asr-12-163-2015,https://doi.org/10.5194/asr-12-163-2015, 2015
Short summary
Assessing gridded observations for daily precipitation extremes in the Alps with a focus on northwest Italy
M. Turco, A. L. Zollo, C. Ronchi, C. De Luigi, and P. Mercogliano
Nat. Hazards Earth Syst. Sci., 13, 1457–1468, https://doi.org/10.5194/nhess-13-1457-2013,https://doi.org/10.5194/nhess-13-1457-2013, 2013
Brief communication "A prototype forecasting chain for rainfall induced shallow landslides"
P. Mercogliano, S. Segoni, G. Rossi, B. Sikorsky, V. Tofani, P. Schiano, F. Catani, and N. Casagli
Nat. Hazards Earth Syst. Sci., 13, 771–777, https://doi.org/10.5194/nhess-13-771-2013,https://doi.org/10.5194/nhess-13-771-2013, 2013

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

Berti, M., Martina, M. L. V., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012. 
Beven, K. J.: EGU Leonardo Lecture: facets of hydrology – epistemic error, non- stationarity, likelihood, hypothesis testing, and communication, Hydrolog. Sci. J., 61, 1652–1665, https://doi.org/10.1080/02626667.2015.1031761, 2015. 
Beven, K. J., Aspinall, W. P., Bates, P. D., Borgomeo, E., Goda, K., Hall, J. W., Page, T., Phillips, J. C., Simpson, M., Smith, P. J., Wagener, T., and Watson, M.: Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?, Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018, 2018. 
Cascini, L., Cuomo, S., and Guida, D.: Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy, Eng. Geol., 96, 107–125, 2008. 
Chancel, L. and Piketty, T.: Carbon and inequality: from Kyoto to Paris. Trends in the global inequality of carbon emissions (1998–2013) & prospects for an equitable adaptation fund, Iddri & Paris School of Economics Report, 2015. 
Download
Short summary
Landslide hazard at a given location may change over time due to climate change, since the frequency and intensity of landslide-triggering factors such as rainfall can vary significantly. It is important for stakeholders and decision-makers to predict trends in landslide hazard to mitigate the risk of losing lives and material assets. This study contributes an innovative method for the prediction of future variations of rainfall-induced landslides and shows its application to an Italian site.
Altmetrics
Final-revised paper
Preprint