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Abstract. In recent years, flow-like landslides have exten-
sively affected pyroclastic covers in the Campania region
in southern Italy, causing human suffering and conspicuous
economic damages. Due to the high criticality of the area, a
proper assessment of future variations in event occurrences
due to expected climate changes is crucial. The study as-
sesses the temporal variation in flow-like landslide hazard
for a section of the A3 “Salerno–Napoli” motorway, which
runs across the toe of the Monte Albino relief in the Nocera
Inferiore municipality. Hazard is estimated spatially depend-
ing on (1) the likelihood of rainfall-induced event occurrence
within the study area and (2) the probability that the any spe-
cific location in the study area will be affected during the
runout. The probability of occurrence of an event is calcu-
lated through the application of Bayesian theory. Temporal
variations due to climate change are estimated up to the year
2100 through an ensemble of high-resolution climate projec-
tions, accounting for current uncertainties in the character-
ization of variations in rainfall patterns. Reach probability,
or defining the probability that a given spatial location is af-
fected by flow-like landslides, is calculated spatially based on
a distributed empirical model. The outputs of the study pre-
dict substantial increases in occurrence probability over time
for two different scenarios of future socioeconomic growth
and atmospheric concentration of greenhouse gases.

1 Introduction

In recent years, eminent scholars have debated about the
main features of “shallow” and “deep” uncertainties in the
assessment of natural hazards (Stein and Stein, 2013; Halle-
gatte et al., 2012; Cox, 2012). Shallow uncertainties are as-
sociated with reasonably knowing the probabilities of out-
comes (Stein and Stein, 2013), while deep uncertainties
are associated with (1) several possible future worlds with-
out known relative probabilities, (2) multiple conflicting but
equally reasonable world views, and (3) adaptation strategies
with remarkable feedbacks among the sectors (Hallegatte et
al., 2012).

As stressed in these works, climate change and its im-
pacts can be considered paradigmatic of very deep uncer-
tainty. Given the extent of potential impacts on communi-
ties (United Nations, 2015), including their economic di-
mension (Stern, 2007; Nordhaus, 2007; Chancel and Piketty,
2015), considerable effort has been made in recent years to
assess the variations in frequency and magnitude of weather-
induced hazards in a changing climate (Seneviratne et al.,
2012). A variety of strategies have been devised and imple-
mented with the aim of detecting the main sources of un-
certainty and their extents (Wilby and Dessai, 2010; Cooke,
2014; Koutsoyiannis and Montanari, 2007; Beven, 2015).

Investigations of future trends in the occurrence and con-
sequences of weather-induced slope movements and of the
uncertainties in their estimation have received relatively lim-
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ited interest (Gariano and Guzzetti, 2016; Beven et al., 2018).
The paucity of investigations could be due to the mismatch
between the usual scale of analysis for landslide case studies
and the much coarser horizontal resolutions of climate pro-
jections currently available as well as the difficulty in gen-
eralizing findings to other contexts, given the relevance of
site-specific geomorphological features.

1.1 Previous studies of flow-like movements in
pyroclastic soils in Campania

In an attempt to address the above limitations, several re-
cent studies have focused on future variations in the occur-
rence of flow-like landslides, or more generally, flow-like
movements affecting pyroclastic covers mantling the carbon-
ate bedrock in the Campania Region in southern Italy. Flow-
like movements in granular materials such as pyroclastic ter-
rain are among the most destructive mass movements due
to their velocity and the absence of warning signs (Hutchin-
son, 2004; Cascini et al., 2008).The aforementioned studies
focused on a number of sites, namely Cervinara (Damiano
and Mercogliano, 2013; Rianna et al., 2016), Nocera Infe-
riore (Reder et al., 2016; Rianna et al., 2017a, b), and Rav-
ello (Ciervo et al., 2016). Several aspects differentiate the
case studies and, consequently, the respective investigations.
The depth, stratigraphy, and grain size of pyroclastic cov-
ers are fundamentally regulated by slope, distance to vol-
canic centers (Campi Flegrei and Somma-Vesuvio), and the
wind direction and magnitude during the eruptions; there-
fore, the critical rainfall pattern inducing the slope failure
varies according to these differences (e.g., intensity and the
length of antecedent precipitation time window). Indeed, at
some locations (Cervinara and Nocera Inferiore), the trigger-
ing event is recognized as being characterized by daily du-
ration (also acting jointly with wet antecedent conditions),
while in other locations (Ravello), events in shallower cov-
ers or covers formed by coarser materials require heavy rain-
fall lasting several hours. Consequently, two different ap-
proaches are followed (for the scope of such a data elabo-
ration) based on the considered duration. Relative to daily
durations, the former modifies daily observations according
to projected anomalies (Damiano and Mercogliano, 2013) or
simulated data through statistical bias correction approaches
(adopted for the Cervinara and Nocera Inferiore test cases).
In the latter case, a stochastic approach is coupled with bias-
corrected climate data to provide assessments at an hourly
scale (adopted for the Ravello test case). Some studies (Reder
et al., 2016; Ciervo et al., 2016; Rianna et al., 2017b) make
use of expeditious statistical approaches referring to rainfall
thresholds to assess slope stability conditions, while other
studies employ physically based approaches (Damiano and
Mercogliano, 2013; Rianna et al., 2017a).

Figure 1. Geographic locations of the three towns considered in the
study.

1.2 Objective of the study

This study focuses on the quantitative estimation of the
temporal evolution of hazard for rainfall-triggered flow-like
movements affecting a stretch of a national motorway in the
municipality of Nocera Inferiore. Flow-like landslide runout
is probabilistically investigated through a frequentist esti-
mate of “reach probability” (Rouiller et al., 1998; Copons
and Vilaplana, 2008) performed in a GIS environment, thus
allowing for the seamless mapping of landslide hazard under
current and future climate change scenarios.

The study presents significant elements of novelty. For in-
stance, through a Bayesian approach, it characterizes pre-
cipitation values cumulated for two time windows as prox-
ies for the triggering of flow-like movements in pyroclastic
covers in the Lattari mountain range. The resulting quanti-
tative model returns temporal variations in triggering prob-
ability, thus accounting for the effect of climate change on
rainfall trends. Uncertainties in variations in rainfall patterns
are taken into account by means of the EURO-CORDEX en-
semble. Projections provided by climate simulations are bias-
adjusted, allowing for the comparison with available physi-
cally based rainfall thresholds while adding further assump-
tions and uncertainties in simulation chains. The analysis
also relies on rainfall data from the rain gauges located in
Gragnano and Castellammare di Stabia. The location of the
three towns in Italy and in the Campania region is illustrated
in Fig. 1.
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2 Description and modeling of the study area

2.1 Geographic and geomorphological description

Most of the territory of the Nocera Inferiore municipality
belongs geomorphologically to the Sarno River valley. The
most urbanized area of the town is located at the toe of the
northern slopes of the Mount Albino relief, pertaining to the
Lattari mountain range (Fig. 2, sector A); other more sparsely
populated areas are located at the foot of the Torricchio hills
(Fig. 2, sector B). These reliefs are constituted by carbon-
ate rocks covered by air-fall pyroclastic deposits originat-
ing from volcanic eruptions (Somma-Vesuvio complex) dur-
ing the last 10 000 years (Pagano et al., 2010). Such covers
in loose pyroclastic soils have historically been affected by
multiple types of rainfall-induced flow movements, including
Gragnano (in 1997), Sarno and Quindici (in 1998), Nocera
(in 2005), and Ischia (in 2006). The complete list of events
affecting the area considered in the study in the period 1960–
2015 is given in Table 2. Movement types include (a) “hyper-
concentrated flows” (flows in the transition from mass trans-
port to mass movement) that are generally triggered by wash-
ing away and/or progressive erosive processes along rills and
inter-rill areas, (b) “channelized debris flows” (channelized
flow-like mass movements) that are generated by slope fail-
ure in “zero order basin” (ZOB) areas (Dietrich et al., 1986;
Cascini et al., 2008) and funnel into stream channels (the
propagation process is laterally confined by the stream chan-
nel), and (c) “un-channelized debris flows” (un-channelized
flow-like mass movements; Costa, 1984; Hutchinson et al.,
2004), which are locally triggered on open-slope areas and
propagate as debris avalanches (the propagation process is
not laterally confined). The third type characterized the most
recent event that affected the town in March 2005, causing
three fatalities and extensive damage to buildings and infras-
tructure (Pagano et al., 2010; Rianna et al., 2014). This study
focuses specifically on a section of the A3 “Salerno–Napoli”
motorway, which runs across the toe of the Monte Albino
relief, as shown in Fig. 3.

3 Hazard: glossary and model

In the disaster risk management discipline, the term “haz-
ard” has been linked to multiple definitions and operational
guidelines, depending on the scope, technical approach em-
ployed, and available data and models. Fell et al. (2008) dis-
tinguish “susceptibility zoning” from “hazard zoning” on the
basis that the former involves the spatial distribution and rat-
ing of the terrain units according to their propensity to pro-
duce landslides, while the latter should include, wherever
possible, the quantitative estimation of the frequency of land-
sliding. In situations where this estimation is difficult to pur-
sue, some approximate guidance on frequency should be pro-
vided. Corominas et al. (2015) defined hazard as “a condi-

Figure 2. Geomorphologic setting and administrative boundaries of
the Nocera Inferiore municipality.

tion that expresses the probability of a particular threat oc-
curring within a defined time period and area”, with no ex-
plicit reference to frequency. In this study, calculated hazard
levels refer to the frequency of the occurrence of at least one
landslide event within the study area in 30-year periods. In
the more specific context of the case study presented herein,
the geologic hazard mapping web page of ISPRA, the Ital-
ian National Institute for Environmental Protection and Re-
search, states that landslide prediction models “usually ad-
dress where an event is expected to occur and with which
probability, without explicitly estimating return periods and
intensities”.

Operationally, the study is conducted by coupling mathe-
matical software with GIS to obtain spatially referenced es-
timates of hazard and its mapping. A digital terrain model
(DTM) of the study area, having a resolution of 15× 15 m,
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Figure 3. Infrastructure-scale view of the study area with the A3 Salerno–Reggio-Calabria motorway (boundaries marked in red).

was built for the purpose of the GIS-based modeling of
runout. The original resolution adopted for the Campania re-
gion’s ORCA project in 2004 was 5×5 m. A variety of DTM
resolutions were tested for the case study. The adopted reso-
lution proved to be sufficient to adequately represent the sur-
face morphology and runout as detailed in Sect. 6. Hazard
is estimated quantitatively for each cell in the GIS-generated
grid through the following model:

H = PL ·PR, (1)

where PL is the probability of event occurrence and PR is
the reach probability for the cell. Occurrence probability de-
fines the likelihood of the occurrence of at least one event in
the study area as a consequence of the attainment of given
thresholds of cumulative rainfall and of the likelihood of
triggering given the occurrence of such thresholds. Reach
probability describes the probability that a given cell will be
reached by a moving soil mass, assuming that flow-like land-
slides have been triggered in one or more potential source ar-
eas. Occurrence probability and reach probability are distinct
parameters that depend on different factors and are computed
separately.

Occurrence probability is partly related to the likelihood
of triggering given the attainment of specific rainfall thresh-
olds, which is assumed to be an inherent, time-invariant at-
tribute of the area, and it is partly related to climate change
through the time-dependent probability of the exceedance
of such rainfall thresholds, as described in Sect. 5. Reach
probability is not related to climate change, as it parame-
terizes the probability of spatial occupation during runout,
assuming that triggering has occurred. Reach probability de-
pends solely on terrain factors and is thus amenable to the

concept of susceptibility, as defined by Fell et al. (2008),
among others. Occurrence and triggering probabilities are re-
lated to rainfall parameters and, thus, are assumed to be spa-
tially invariant and uniform for the entire area (but are time-
dependent), while reach probability depends on geomorpho-
logical factors and is thus cell-specific and spatially variable
(but is time-invariant) within the area. These aspects are ex-
plained in detail later in the paper. The study is conducted
according to the operational flowchart shown in Fig. 4. The
modular approach initially involves the disjoint estimation of
occurrence probability (including its temporal variation), as
described in Sect. 5, and of reach probability, as detailed in
Sect. 6. Subsequently, hazard is calculated in Sect. 7 using
the model described above.

4 Source datasets

4.1 Observed precipitation data

Observed datasets are used to identify time windows used
as proxies for flow-like landslide triggering to implement the
Bayesian approach described in Sect. 5.2. Subsequently, data
from the Nocera Inferiore station are used for the bias adjust-
ment of climate projections estimating occurrence probabil-
ity (Sect. 5.3). Although the study focuses on Nocera Infe-
riore flow-like movements, data from the neighboring towns
of Gragnano and Castellammare di Stabia are considered in
order to increase the size of the event database, thus increas-
ing the statistical significance of the approach. At both sites,
events affecting pyroclastic covers were observed to be very
similar to those of the Nocera Inferiore slopes (De Vita and
Piscopo, 2002) as described in Sect. 4.2.
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Figure 4. Operational flowchart of the study.

The dataset related to daily precipitation spans across the
time window from 1 January 1960 to 31 December 2015. Un-
fortunately, no weather stations were in operation throughout
the entire period for any of the three towns. Consequently, the
dataset was reconstructed by merging data provided by dif-
ferent weather stations. Prior to 1999, the network of moni-
toring stations was managed by Servizio Idrografico e Mare-
ografico Nazionale (SIMN – Hydrographic and Tidal Na-
tional Service) network at the national level. In that period,
the selected reference weather station is that which is located
within the town and is identified with the town’s name, as can
be found in the SIMN yearbooks. Subsequently, the man-
agement was delegated to regional level, with the regional
civil protection managing the dataset for the Campania re-
gion. Since 1999, the reference weather stations have been
selected as some of those adopted for the towns in regional
early warning systems against geological and hydrological
hazards (2005). Checks for the homogeneity of time series
and for the unwarranted presence of break points between
the two periods were carried out for this study through the
Pettitt (1979) and CUSUM (CUmulative sum; Smadi and
Zghoul, 2006) tests. Source weather stations, their locations,
installation times, and main (i.e., at least 4 months in a year)
out-of-use periods are reported in Table 1.

4.2 Flow-like movements inventory

The inventory was compiled using three main references:
Vallario (2000), De Vita and Piscopo (2002), and, for the
more recent events, the “Event Reports” drafted by the re-
gional civil protection. The multiple sources used for recon-
structing the inventory provide quite different details. De
Vita and Piscopo (2002), for example, report the cumula-
tive rainfall values inducing the events on time spans up to
60 days for events in the same geomorphological context.
Vallario (2000) provides brief descriptions about the events
(also for the other natural hazards affecting the region), in-
cluding the number of fatalities and injured people. “Event
Reports”, drafted by the regional civil protection, contain ex-
haustive descriptions about the weather patterns inducing the
triggering event and the main consequences for the affected
communities. It is worth recalling that only events affecting
pyroclastic covers have been considered and included in the
dataset. Sixteen events were observed in the period 1960–
2015, as detailed in Table 2.

4.3 Climate projections

The generation of climate projections was conducted for No-
cera Inferiore as a preliminary step in the quantitative char-
acterization of the temporal evolution of occurrence proba-
bility, since the latter depends partly on the frequency with
which specific rainfall thresholds are attained. The adopted
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Table 1. Weather stations used in the compilation of datasets for Nocera Inferiore, Gragnano, and Castellammare di Stabia and their locations,
installation times, and main out-of-use periods.

Town Weather station
(1960–1999)

Installation and main
out-of-use periods

Weather
station
(2000–2015)

Installation and main
out-of-use periods

Nocera Inferiore Nocera Inferiore
(61 m a.s.l.)
40◦45′0′′ N
14◦38′9′′ E

Since 1899
1964, 1965, 1967,
1981, 1982

Tramonti
(422 m a.s.l.)
40◦42′14′′ N
14◦38′49′′ E

Since February 2002
2000, 2001

Gragnano Gragnano
(173 m a.s.l.)
40◦40′59′′ N
14◦31′9′′ E

Since 1921 Gragnano_2
(195 m a.s.l.)
40◦41′15′′ N
14◦31′38′′ E

Since November
2001
2000, 2001

Castellammare di
Stabia

Castellammare di
Stabia
(18 m a.s.l.)
40◦41′30′′ N
14◦28′17′′ E

Since 1929
1964, 1965, 1966

Pimonte
(437 m a.s.l.)
40◦40′ 27′′ N
14◦30′17′′ E

Since October 2000
2000

Table 2. Flow-like mass movements affecting pyroclastic covers in
Nocera Inferiore, Gragnano, and Castellammare di Stabia in the pe-
riod 1960–2015.

Nocera Inferiore Gragnano Castellammare
di Stabia

8 December 1960 17 February 1963 17 February 1963
4 November 1961 2 January 1971 17 November 1985
6 March 1972 21 January 1971 23 February 1987
10 January 1997 22 February 1986 10 November 1987
4 March 2005 10 January 1997 11 January 1997

4 March 2005

simulation chain includes several elements. Firstly, scenarios
about future variations in the concentrations of atmospheric
gases inducing climate alterations are assessed through so-
cioeconomic approaches including demographic trends and
land use changes. IPCC (Intergovernmental Panel on Cli-
mate Change) defined Representative Concentration Path-
ways (RCP) in terms of increases in radiative forcing in
the year 2100 (compared to preindustrial era) of about 2.6,
4.5, 6.0, and 8.5 W m−2. Such scenarios force global climate
models (GCM). These are recognized for their reliable rep-
resentation of the main features of the global atmospheric
circulation but fail to reproduce weather conditions at tem-
poral and spatial scales of relevance for assessing impacts
at the regional and local scale. In order to bridge such a
gap, GCMs are usually downscaled through regional climate
models (RCMs). These are climate models nested on GCMs,
from which they retrieve initial and boundary conditions, but
work at higher resolutions (including a non-hydrostatic for-
mulation) on a limited area. The dynamic downscaling from

GCMs to RCMs allows for a better representation of surface
features (orography, land cover, etc.) and of associated atmo-
spheric dynamics (e.g., convective processes). Nevertheless,
persisting biases can hinder the quantitative assessment of
local impacts.

In order to cope with such shortcomings, a number of
strategies can be adopted. For instance, to characterize un-
certainty associated to future projections, a climate multi-
model ensemble can be utilized where different combina-
tions of GCM and RCM run on fixed grid and domain. Fur-
thermore, statistical approaches (e.g., Maraun, 2013; Villani
et al., 2015; Lafon et al., 2013) can be pursued to reduce bi-
ases assumed as systematic in simulations. More specifically,
quantile mapping approaches have been applied for impact
studies with satisfactory results in recent years. In these ap-
plications, the correction is performed to ensure that “a quan-
tile of the present-day simulated distribution is replaced by
the same quantile of the present-day observed distribution”
(Maraun, 2013). However, limitations and assumptions as-
sociated to these approaches should be clear to practitioners
(Ehret, 2012; Maraun and Widmann, 2015).

In the present study, climate simulations included in
EURO-CORDEX multi-model ensemble at 0.11’ (approxi-
mately 12 km) are considered under the RCP4.5 and RCP8.5
scenarios, as described in Table 3 (Giorgi and Gutowski,
2016). Climate simulations are adjusted for bias through an
empirical quantile mapping approach (Gudmundsson et al.,
2012) using data from Nocera Inferiore weather stations from
the period 1981–2010.

In Fig. 5, the variations expected in monthly cumulative
values (5a) and maximum daily precipitation (5b) are dis-
played, assuming 1981–2010 as the reference period and
splitting the period 2010–2100 into three 30-year periods.
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More specifically, the upper part of Fig. 5a shows the ex-
pected variations in monthly cumulative variations for RCP
4.5 (continuous line) and RCP8.5 (hatched line) as returned
by bias-corrected projections in the short-term (green; 2011–
2040 vs. 1981–2010), medium-term (blue; 2041–2070 vs.
1981–2010) and long-term (red; 2071–2100 vs. 1981–2010).
The bottom part of Fig. 5a shows the observed annual cy-
cle of monthly cumulative precipitation (in mm). Fig. 5b
shows the mean values of maximum daily precipitation in
the reference observed period (1982–2009) projected onto
short-term (green: 2011–2040 vs. 1981–2010), medium-term
(blue: 2041–2070 vs. 1981–2010) and long-term (red: 2071–
2100 vs. 1981–2010) periods. Filled and dashed bars corre-
spond to results for RCP4.5 and RCP8.5, respectively.

The ensemble mean values from EURO-CORDEX opti-
mally overlap the actual values (data not displayed) for the
same time span. Concerning future time periods, reductions
of up to 45 % (under RCP8.5) are expected in the summer
season. From this perspective, the decreases are mainly reg-
ulated by the severity of concentration scenarios. Values gen-
erally lower than the current ones are also estimated in spring
(approximately −10 %) and in the first part of fall (approxi-
mately −5 %). These predictions are characterized by a fluc-
tuating signal. An increase is expected in the remaining sea-
sons, with few exceptions (i.e., short term 2011–2040 under
RCP4.5). Higher increases could exceed 20 % in Novem-
ber and 15 % in January. These evolutions could primarily
induce variations in the timing of flow-like movements af-
fecting pyroclastic covers in the area. Such events especially
tend to occur in the second part of winter (or first part of
spring), following the increase in antecedent precipitation.
On the contrary, the likelihood of occurrence reduces during
fall and in the first part of winter. It is also worth noting that
the expected increase in temperature (not taken into account
in this approach) could lead to a higher atmospheric evapora-
tive demand and, thus, to lower values of soil water content
within the pyroclastic covers. Regarding precipitation trig-
gering events, the variations in maximum daily precipitation
are displayed in Fig. 4b. Under both scenarios, increases with
respect the reference value (about 90 mm day−1), ranging
from 5 % and 15 % and as high as 20 % for a “mid-way” sce-
nario are expected under RCP8.5 for the intermediate time
horizon.

5 Occurrence probability

5.1 Calculation method

Flow-like landslide occurrence probability was estimated
quantitatively as a function of two cumulative rainfall thresh-
olds, namely, the 1-day rainfall β01 and the 59-day rainfall
β59. Several studies have stressed the prominent role of an-
tecedent precipitation for the occurrence of movements in
pyroclastic covers; De Vita and Piscopo (2002) used 59-day

Table 3. Available Euro-CORDEX simulations at a 0.11◦ resolution
(∼ 12 km) over Europe, providing institutions, GCMs, and RCMs.

Code Institution GCM RCM

1 CLMcom CNRM-CM5_r1i1p1 CCLM4-8-17_v1
2 CLmcom EC-EARTH_r12i1p1 CCLM4-8-17_v1
3 CLMcom MPI-ESM-LR_r1i1p1 CCLM4-8-17_v1
4 DMI EC-EARTH_r3i1p1 HIRHAM5_v1
5 KNMI EC-EARTH_r1i1p1 RACMO22E_v1
6 IPSL-INERIS IPSL-CM5A-MR_r1i1p1 WRF331F_v1

7 SMHI CNRM-CM5_r1i1p1 RCA4_v1
8 SMHI EC-EARTH_r12i1p1 RCA4_v1
9 SMHI MPI-ESM-LR_r1i1p1 RCA4_v1
10 SMHI IPSL-CM5A-MR_r1i1p1 RCA4_v1

rainfall for the same geomorphological context, and Napoli-
tano et al. (2016) defined different intensity–duration (I–D)
rainfall thresholds for dry and wet seasons for the Sarno area.
Comegna et al. (2017) stated through a statistical framework
that the effective precipitation period for the area of the Lat-
tari Mountains could be 3 months long. Fiorillo and Wil-
son (2004) suggested a simplified approach to evaluate the
attainment of soil moisture states that could act as trigger-
ing factors. Pagano et al. (2010), interpreting the 2005 events
in Nocera Inferiore, suggested that antecedent precipitation
should be considered for at least 4 months for those events.
Reder et al. (2018) stressed the role of soil–atmosphere water
exchanges during the entire hydrological year, also account-
ing for the effect of evaporation losses. They also stated that
the effective length of effective antecedent precipitation win-
dow is highly dependent on local conditions: cover depth,
pumice lenses, and bottom hydraulic conditions.

In this study, cumulative rainfall parameters were calcu-
lated using a moving window procedure associated with each
day from 1 January 1960 to 31 December 2015 from the ob-
served precipitation data described in Sect. 4.1. The num-
ber of events observed for each day at the Nocera Inferiore,
Gragnano and Castellammare di Stabia, as reported in the in-
ventory, were associated with the rainfall data. Figure 6 plots
the pairs of β01 and β59 recorded daily in the period 1960–
2015, along with the indication of the occurrence (by site) or
non-occurrence of flow-like landslide events.

The probability of event occurrence is given by

PL =

Nβ01∑
i=1

Nβ59∑
j=1

[
P
(ij)
T ·P

(
β
(i)
01 ,β

(j)
59

)]
, (2)

where β(i)01 is the ith value of cumulative rainfall β01 (i =
1, . . ., Nβ01), β

(j)
59 is the j th value of cumulative rainfall β59

(j =1,. . ., Nβ59), and P (ij)T = P
(
T |β

(i)
01 ,β

(j)
59

)
is the condi-

tional probability of triggering of a flow-like landslide given
the simultaneous occurrence of β(i)01 and β(j)59 .
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Figure 5. (a) expected variations in monthly cumulative variations and (b) mean values of maximum daily precipitation.

The joint probability P
(
β
(i)
01 ,β

(j)
59

)
of the simultaneous

occurrence of β(i)01 and β(j)59 is obtained as the frequentist ra-
tio of the number of days in which the simultaneous occur-
rence of β(i)01 and β(j)59 was recorded to the total number of
days for which observations at the rain gauges are available.
While P

(
β
(i)
01 ,β

(j)
59

)
is assumed to be temporally variable

due to the climate-change-induced variations in rainfall pat-
terns over time, the triggering probability is assumed to be
an inherent, temporally invariant characteristic of the study
area, as it parameterizes, in terms of probability, the suscep-
tibility of the triggering of flow movements in the area in
response to the attainment of specific rainfall thresholds. It
accounts implicitly and empirically for all physical factors
affecting triggering mechanisms. The triggering probability
is calculated as described in the following section.

5.2 Triggering probability calculation method

The conditional probability P (ij)T of the triggering of a flow-
like landslide given the simultaneous occurrence of R(i)01 and
R
(j)
59 is estimated using a Bayesian approach as suggested by

Berti et al. (2012). The procedure refers to Bayes’ theorem,
formulated as follows:

P
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=
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) , (3)

where, in the Bayesian glossary, P
(
β
(i)
01 ,β

(j)
59 |T

)
is the like-

lihood, i.e., the conditional joint probability of the simulta-
neous occurrence of β(i)01 and β(j)59 if an event is triggered in
the reference area, and P(T ) is the prior probability, i.e., the
probability of triggering in the reference area, regardless of
the magnitude of β01 and β59.

Let Nβ represent the total number of rainfall events
recorded during a given reference time period, NL the to-
tal number of flow-like landslides occurred during the given
reference time period, N

β
(i)
01

the number of rainfall events of
a given magnitude of β01 recorded during the given time ref-
erence, and N

β
(j)
59

the number of rainfall events of a given
magnitude of β59 recorded during the given time reference.

The likelihood can be calculated as the product of the
marginal conditional probabilities of attainment of β(i)01 and
β
(j)
59 given the occurrence

P
(
β
(i)
01 ,β

(j)
59 |T

)
= P

(
β
(i)
01 |T

)
·P
(
β
(j)
59 |T

)
. (4)

The above Bayesian probabilities can be computed in
terms of relative frequencies as follows:

P (T )=
NL

Nβ
, (5)

P
(
β
(i)
01 |T

)
=

N
β
(i)
01 |T

NL
, (6)

P
(
β
(j)
59 |T

)
=

N
β
(j)
59 |T

NL
, (7)

where N
β
(i)
01 |T

is the number of rainfall events of a magnitude

of at least β(i)01 recorded during the given time reference that
resulted in the triggering of flow-like landslides, and N

β
(j)
59 |T

is the number of rainfall events of a magnitude of at least β(j)59
recorded during the given time reference that resulted in the
triggering of flow-like landslides.

Figure 7 plots triggering probability PT as a function of
1-day and 59-day cumulative rainfall, as estimated through
the Bayesian approach. Possible future variations in land use
and land cover features are assumed not to significantly af-
fect proxy values. This is a simplistic hypothesis, as local
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Figure 6. Pairs of cumulative rainfall thresholds β01 and β59
recorded daily in the period 1960–2015, with occurrence (by site)
or non-occurrence of landslide events.

Figure 7. Landslide triggering probability PL as a function of 1-day
and 59-day cumulative rainfall.

conditions could substantially modify the susceptibility of
the areas to event occurrence (e.g., fires destroying vegeta-
tion). Should substantial variations in physical factors occur
in the study area, a re-evaluation of triggering probability is
warranted.

5.3 Occurrence probability outputs

Following the quantitative estimation of the site-specific trig-
gering probability as described above, flow-slide occurrence
probability was calculated using Eq. (2) for each of the 10
EURO-CORDEX ensemble models and for 10 sets of 30-
year intervals from 1981–2010 to 2071–2100 for both the
RCP4.5 and RCP 8.5 scenarios.

A quantitative statistical analysis was conducted with the
aim of analyzing ensemble outputs. The first module of the
analysis consisted of the second-moment statistical charac-
terization of the output samples. Such characterization in-
volved the calculation of the mean, standard deviation, and
sample coefficient of variation (given by the ratio of the lat-
ter to the former) for the 10-valued sets of ensemble model
outputs for each of the 10 30-year intervals. Figure 8 plots
the temporal variation of PL for 10 sets of 30-year intervals
from 1981–2010 to 2071–2100 and for the RCP4.5 and RCP
8.5 scenarios, more specifically, model outputs and ensemble
means for RCP4.5 (8a), RCP8.5 (8b), and for both concen-
tration scenarios (8c). Figure 8d plots the sample coefficient
of variation for both scenarios.

For the RCP4.5 scenario, considering the running 30-year
averages, a visual inspection of Fig. 8 suggested that all avail-

able projections predict a moderate increase in occurrence
probability. A higher spread among the models is recogniz-
able at the middle of the twenty-first century, as parameter-
ized by the peak in the sample coefficient of variation. Such
an increased spread is mainly due to the outputs of two mod-
els constantly representing the upper and bottom boundaries
of the ensemble throughout the entire period investigated.
For the RCP8.5 scenario, one of the 10 ensemble models
yields occurrence probability values that progressively in-
crease with respect to the other models over time. This leads
to a marked increase in the scatter as parameterized by the
sample coefficient of variation.

The second module of the statistical analysis consisted of
the assessment of the existence and strength of a temporal
statistical trend in occurrence probability values for the com-
prehensive set of output of the 10 models in the CORDEX
ensemble for the 10 sets of 30-year periods. This analysis
was conducted by means of two non-parametric statistical
tests aimed at assessing the statistical independence between
occurrence probability and time (as parameterized by a 30-
year interval to which a specific occurrence probability value
pertains) through the calculation of rank correlation statis-
tics and related p values that parameterize the significance
level at which the null hypothesis of statistical independence
can be accepted. Spearman’s test (Spearman, 1904) entails
the calculation of Spearman’s rank correlation coefficient
ρ, which measures rank correlation on a −1 : 1 scale (−1
is the full negative rank correlation, 0 is no rank correla-
tion, and 1 is the full rank correlation) for an associated p
value. The output values of ρ were 0.351 for RCP4.5 and
0.381 for RCP8.5. The associated p values were calculated
as 3.45× 10−4 for RCP4.5 and 9.22× 10−5 for RCP8.5, at-
testing to a very low significance level for the rejection of the
null hypothesis of statistical independence between the time
and occurrence probability. Kendall’s test (Kendall, 1938)
entails the calculation of the statistic τ , which measures rank
correlation on a −1 : 1 scale (−1 is the full negative rank
correlation, 0 is no rank correlation, 1 is the full rank cor-
relation) for an associated p value. The output values of τ
were 0.245 for RCP4.5 and 0.277 for RCP8.5. The associ-
ated p values were calculated as 5.42×10−4 for RCP4.5 and
9.07×10−5 for RCP8.5, again attesting to a very low signif-
icance level for the rejection of the null hypothesis. The non-
parametric analysis thus assessed the existence of a strong
statistical dependency of occurrence probability from time,
thereby confirming the influence of climate change on flow-
like movement hazard.

The third module consisted of the concise formulation of
occurrence probability through the fitting of analytical mod-
els. The purpose of this model was to allow for a more
concise forward estimation of triggering probability. In this
study, the fitting of analytical models was conducted with the
aim of relating analytically calculated values to specific lev-
els of the likelihood of exceeding the occurrence probability.
This was achieved through quantile regression.
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Figure 8. Outputs of the second-moment statistical analysis of landslide occurrence probability PL.

Quantile regression is a type of regression analysis often
used in statistics and econometrics. Whereas the method of
least squares results in estimates that approximate the condi-
tional mean of the response variable given certain values of
the predictor variables, quantile regression aims at estimating
any user-defined quantile of a response variable in this case
of triggering probability (Yu et al., 2003). Quantile regres-
sion implements a minimization algorithm and yields model
parameters that define the analytical model for user-defined
regression quantiles (corresponding to a likelihood of non-
exceedance). The use of quantile regression enables us to ad-
dress explicitly different levels of conservatism in the output
models, with higher quantiles corresponding to higher levels
of conservatism. Quantiles of 0.50 and 0.90 were considered,
corresponding to 50 % and 10 % likelihoods of exceedance,
i.e., to scenarios of medium and high conservatism, respec-
tively.

In applying quantile regression, a variety of analytical
models were adapted to the dataset, including the linear,
power, logarithmic, and modified geometric models. Among
those, the third displayed the best goodness of fit. The modi-
fied geometric model employed in this study is given by

PL = p1 · (10 · t30)
p2
t30 , (8)

where p1 and p2 are the model parameters to be estimated
using quantile regression and t30 = 1 . . . 10 is an auxiliary
discrete natural variable referring to the ordinality of the 30-

year averaging interval (e.g., 1981–2010 is interval “1” and
2071–2100 is interval “10”). Fig. 9a and b show the quantile
regression-based fits of the modified geometric model to the
samples of occurrence probability values for likelihoods of
exceedance of 50 % (Q50) and 10 % (Q90) for RCP4.5 and
RCP8.5, respectively.

The output model parameters for RCP4.5 were p1 =

1.38×10−3 and p2 =−0.087 forQ50 and p1 = 1.71×10−3

and p2 =−0.156 for Q90. For RCP8.5, p1 = 1.37× 10−3

and p2 =−0.110 for Q50 and p1 = 1.83× 10−3 and p2 =

−0.190 for Q90. While the plots show a continuous fitted
model for the sake of visual appreciation of the quantile re-
gression outputs, it must be noted that t30 is a discrete vari-
able that can only take integer values between 1 and 10. Ta-
ble 4 illustrates the values of occurrence probability as calcu-
lated from the modified geometric models for Q50 and Q90.
The ratios of occurrence probability of a given interval to
those of the observed data (1981–2010) are also provided to
provide a quantitative measure of the effect of climate change
over time. The findings displayed comparable increases un-
der both RCPs, with no clear increases for the more severe
scenario. Such results are consistent with variations shown
in Fig. 4, where monthly anomalies and future expected val-
ues in maximum daily precipitation are reported. While de-
creases during the dry season are clearly more remarkable
under RCP8.5, increases during the fall and winter seasons
do not return clear patterns regulated by scenarios or time
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Figure 9. Fitting of modified geometrical models to landslide occurrence probability ensemble data for quantiles Q50 and Q90: (a) RCP4.5
and (b) RCP8.5.

Figure 10. Geomorphological (a) and hazard maps (b) of the Land-
slide Risk Management Plan of the River Basin Authority (PSAI; in
Italian, Piano Stralcio di Assetto Idrogeologico, 2015).

horizons. In this perspective, no significant differences be-
tween RCPs are observed.

It is worth recalling that the present approach neglects sev-
eral dynamics (e.g., effects of evapotranspiration reducing
the soil moisture), which could play a significant role because
of increased warming. For any given time interval and level
of conservatism, occurrence probability is assumed to be spa-
tially uniform within the study area, since the database that is
used to develop the Bayesian method refers to the entire area
itself. As detailed in a similar study by Berti et al. (2012), the
quantitative output of empirical methods such as the one de-

Figure 11. Spatial distribution of reach probability at hillslope
scale; the area corresponds to the box named “Mt. Albino” in Fig. 2.

veloped in the paper implicitly accounts for the spatial vari-
ability (if any) of rainfall characteristics within the area. In
this study, three distinct reference weather stations were used
for the three towns. The analysis of Nocera relies only on the
local weather station, whose data were also used for bias cor-
rection purposes. Given the limited geographical extension
of the area, the component of epistemic uncertainty due to
spatial variability is not expected to be significant.

6 Reach probability

Investigation of the spatial variability of flow-like landslide
hazard entails the modeling of its downslope propagation
(runout). Reach probability is the probability (from 0, cer-
tainty of no reach, to 1, certainty of reach) of each point
in the spatial domain being affected by the event during
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Table 4. Temporal evolution of occurrence probability for RCP4.5 and RCP8.5 (50th and 90th quantiles).

RCP4.5 RCP8.5

Interval PL (Q50) ratio PL (Q90) ratio PL (Q50) ratio PL (Q90) ratio

1981–2010 1.13× 10−3 1.00 1.20× 10−3 1.00 1.06× 10−3 1.00 1.18× 10−3 1.00
1991–2020 1.21× 10−3 1.07 1.36× 10−3 1.13 1.16× 10−3 1.09 1.37× 10−3 1.17
2001–2030 1.25× 10−3 1.11 1.44× 10−3 1.20 1.21× 10−3 1.14 1.47× 10−3 1.25
2011–2040 1.27× 10−3 1.13 1.49× 10−3 1.24 1.24× 10−3 1.16 1.53× 10−3 1.30
2021–2050 1.29× 10−3 1.14 1.52× 10−3 1.27 1.26× 10−3 1.18 1.57× 10−3 1.33
2031–2060 1.30× 10−3 1.15 1.54× 10−3 1.29 1.27× 10−3 1.20 1.60× 10−3 1.36
2041–2070 1.31× 10−3 1.16 1.56× 10−3 1.30 1.28× 10−3 1.21 1.63× 10−3 1.38
2051–2080 1.31× 10−3 1.16 1.57× 10−3 1.31 1.29× 10−3 1.21 1.65× 10−3 1.40
2061–2090 1.32× 10−3 1.17 1.59× 10−3 1.32 1.30× 10−3 1.22 1.66× 10−3 1.41
2071–2100 1.32× 10−3 1.17 1.60× 10−3 1.33 1.31× 10−3 1.23 1.67× 10−3 1.42

Figure 12. Spatial distribution of reach probability at infrastructure
scale and indication of section A–B.

the runout process. Several morphologically, empirically,
and physically based approaches are available for quantita-
tive runout analysis (Hürlimann et al., 2008). Each of these
may present advantages or weaknesses in relation to site-
and/or phenomenon-specific attributes, data availability, and
the scale of the analysis. Consistent with the methods pre-
viously used to define rainfall-triggering scenarios, the ap-
proach used to define downslope runout scenarios is based
on an algorithm involving stochastic modeling.

6.1 Reach probability calculation method

Reach probability was computed spatially using Flow-R, a
DTM-based distributed empirical model developed in the
Matlab® environment (Horton et al., 2013). Due to the large
geographical scale of the area and to the deep complex-

ity of the analyzed phenomena, an approach that was not
highly parameter-dependent was deliberately adopted. A va-
riety of DTM resolutions were tested for the case study, and a
15× 15 m resolution was chosen. Comparing the DTM with
the real current morphological shape of the areas both nu-
merically and by expert judgment, the adopted resolution is
deemed to represent the channelized shape and the fan areas
with good accuracy, confirming the Horton et al. (2013) ob-
servations. The flow-slide spreading is controlled by a flow
direction algorithm that reproduces flow paths (Holmgren,
1994) and by a persistence function to consider inertia and
abruptness in change of the flow direction (Gamma, 2000).
In the setting used in this study (x = 1, see Eq., 3 in Hor-
ton et al., 2013), the flow direction algorithm proposed by
Holmgren (1994) is similar to the multiple D8 of Quinn et
al. (1991, 1995). The multiple D8 distributes the flow to all
neighboring downslope cells weighted according to slope.
The algorithm tends to produce more realistic-looking spa-
tial patterns than the simple D8 algorithm by avoiding con-
centration in distinct lines (Seibert and McGlynn, 2007). The
maximum possible runout distances are computed by means
a simplified friction-limited model based on a unitary energy
balance (Horton et al., 2013).

One-run propagation simulation provides possible flow-
paths generated from previously identified triggering or
source areas. In this work, source areas were identified by
means of the official geomorphological map of the “Campa-
nia Centrale” River Basin Authority (PSAI, 2015). The set
of source areas coincides with the union of the “zero order
basin” (ZOB) and current “niche/failure” areas, as shown in
Fig. 10. This hypothesis is in accordance with the require-
ment of consistency with accounts of historical events and
with the aim of considering the most pessimistic possible
triggering scenarios (i.e., those with maximum mass poten-
tial energy).
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Figure 13. Reach probability along the A–B section (Fig. 12) of the
A3 motorway (point A is located at x = 0).

The reach probability for any given cell PR is calculated
by the following equation:

PR =
pfd
u p

p
u∑8

v=1p
fd
v p

p
v

p0, (9)

where u and v are the flow directions, pu is the probability
value in the uth direction, pfd

u is the flow proportion accord-
ing to the flow direction algorithm, ppu is the flow proportion
according to the persistence function, and p0 is the proba-
bility determined in the previous cell along the generic com-
puted path. The values are subsequently normalized. Runout
routing is stopped when (1) the angle of the line connect-
ing the source area to the most distant point reached by the
flow slide along the generic computed path is smaller than
a predefined angle of reach (Corominas, 1996) and (2) the
velocity exceeds a user-fixed maximum value or is below the
value corresponding to the maximum energy lost due to fric-
tion along the path. The values that do not fit the aforemen-
tioned requirements are redistributed among the active cells
to ensure the conservation of the total probability value.

6.2 Reach probability outputs

The propagation routine was applied to the DTM described
in Sect. 3. An angle of reach of 4◦ was calibrated based
on the geomorphological information (i.e., the extension of
the slope fan deposition) and the official hazard maps of the
Landslide Risk Management Plan of the River Basin Author-
ity (PSAI, 2015) shown in Fig. 10, considering a “paroxys-
mal” event. Consistent with the mean values reported by the
scientific literature (Faella and Nigro, 2001; Revellino et al.,
2004) for the same phenomena and in the same region, the
maximum runout velocity was set at 10 m s−1. Figure 11 il-
lustrates the spatial distribution of reach probability at the
hillslope scale. Source areas are also indicated. The runout
characteristics of the event types considered (types “b” and
“c”; see Sect. 2.1) can be significantly different. Neverthe-

less, the same set of parameters (reach angle and velocity)
satisfies both event conditions adequately. It may be noted
that one un-channelized event (March 2005) was considered
in this study.

In this area, the highway runs mostly on a soil embank-
ment. The road level is generally elevated with respect to the
paths of the downslope flows. The propagation impacts the
embankment and stops in front of – or laterally continues ac-
cording to – the topographic information and the model set-
ting. Differently, in some points, the highway runs approx-
imately at the same level of the fans, thereby allowing the
propagating flow to run onto the road. In both cases, dam-
age or disruptions may be caused to the infrastructure. In
order to overcome this distinction and to cover both scenar-
ios, only flow propagation to the upstream boundary of the
infrastructure is considered in the study. An illustrative ex-
ample is shown in the magnified focus area in Fig. 12. Due
to the reasons mentioned above, the road’s surface is only
partially affected by the flow slides. This study focuses on
a 400 m stretch of the infrastructure (from point A to point
B in Fig. 12), the runout values to be considered in the risk
assessment should be taken along the section A–B (Fig. 12).
The results shown in Fig. 13 attest to the marked spatial vari-
ability of reach probability along the investigated section of
the A3 motorway infrastructure.

7 Calculation of hazard

Once occurrence probability and reach probability have been
estimated as illustrated in Sects. 5 and 6, respectively, it is
possible to calculate hazard using Eq. (1). Hazard is tempo-
rally variable, because occurrence probability displays tem-
poral variability as a consequence of climate change, as
shown in Sect. 5.3. Reach probability is assumed to be tem-
porally invariant, as it is deterministically related to terrain
morphology. This entails that the reach probability outputs
obtained in Sect. 6.2 are valid only for the current terrain
morphology. Should significant variations in terrain mor-
phology occur, for instance, in case of the occurrence of
flow-like landslides, reach probability would need to be re-
assessed, as described in Sect. 6.1.

To complete the flowchart shown in Fig. 4, an example
calculation of hazard is provided for the section A–B. Fig-
ure 14 shows the spatially and temporally variable hazard
profile for time intervals 1991–2020 and 2071–2100, for both
quantilesQ50 andQ90 and for RCP4.5 and RCP 8.5. The oc-
currence probability values used to multiply the reach prob-
ability values shown in Fig. 13 are taken from Table 4. Thus,
the estimated variations primarily reflect changes in occur-
rence probability due to expected climate change. In this re-
gard, an increase is estimated under both concentration sce-
narios, Trends in the increase are related to the severity of
scenario (the more severe, the higher the increase) and the
investigated percentile (the less frequent, the higher the in-
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Figure 14. Landslide hazard for section A–B, calculated for time intervals 1991–2020 and 2071–2100 and for quantiles Q50 and Q90:
(a) RCP4.5 and (b) RCP8.5.

crease). In spatial terms, more pronounced increases in haz-
ard are detectable in the current peak reach probability, which
increases from 4× 10−4 to 5× 10−4.

8 Concluding remarks

This paper has illustrated an innovative methodology for the
quantitative estimation of rainfall-induced flow-like move-
ment hazard. An example of the application of the proposed
method was conducted for a short section of a motorway.
The quantitative approach to hazard estimation was pursued
through the implementation of models that are capable of
simulating both deposition and entrainment, similar to other
notable literature contributions (e.g., Deangeli, 2008; Rosatti
and Begnudelli, 2013; Frank et al., 2015; Stancanelli et al.,
2015; Cuomo et al., 2016; Gregoretti et al., 2018). Despite
the limited extension of the study area, the results displayed
a marked temporal and spatial variability of hazard. The tem-
poral variability of hazard is a consequence of climate change
as parameterized through quantitative projections for con-
centration scenarios RCP4.5 and RCP8.5. Significant tempo-
ral variability was assessed for both concentration scenarios.
The considerable spatial variability resulting from the case
study stems from the spatial variability of reach probability,
as modeled in the runout analysis.

The calculation of occurrence probability, specifically
in the triggering probability calculation phase, relies on a
Bayesian approach that replicates the one provided by Berti
et al. (2012). This study replicates the hypotheses and glos-
sary introduced by these researchers and shares the impli-
cations and possible limitations of such an approach. For
instance, the modeling hypothesis by Berti et al. (2012) is
adopted, in which multiple flow-like landslides are counted
as one single event. Hence, the Bayesian method presented in
the paper quantifies the probability of occurrence of a land-
slide scenario (defined as “at least one event in the proximity
area”) in a well-defined time period (30 years). This defini-
tion of scenario is semantically consistent with the one pro-

vided by Corominas et al. (2015) Reach probability, as esti-
mated quantitatively in the study, is consistent with this defi-
nition, as it is calculated from the superposition of all possi-
ble runout paths from all events potentially occurring from all
source areas. Hazard, as calculated using the above hypothe-
ses, is thus a conservative, upper-bound estimate related to
a specific rainfall scenario involving specific values of 1-day
and 59-day cumulative rainfall. From a semantic standpoint,
hazard as defined herein is also consistent with the reference
glossary provided by Corominas et al. (2015).

The quantitative estimates of hazard as obtained in this pa-
per are pervaded by significant uncertainty. Among the main
sources of uncertainty are the climate change projections, the
runout model, and the Bayesian model developed to quantify
triggering probability. These uncertainties are epistemic in
nature, as they stem from the inherent difficulty in compiling
climate change projections, the inevitable degree of approxi-
mation and imperfection in runout modeling capabilities, and
the limited rainfall and flow-like landslide occurrence data
used to develop triggering probability curves. As such, in-
creased modeling capability and improved databases could
reduce the magnitude of uncertainty associated with hazard
estimation.

The hazard outputs obtained by the method can be used
directly in the quantitative estimation of risk. The latter also
requires the quantitative estimation of the vulnerability of
human-valued assets (i.e., vehicles, persons, etc.) and the ex-
posure (i.e., the number and/or degree of presence) of the
assets themselves in the study area in a referenced time pe-
riod.

Notwithstanding the above uncertainties and limitations,
the quantitative estimation and assessment of the spatial and
temporal variability of hazard provide an important decision
support tool in the disaster risk management cycle, specifi-
cally in the planning and prioritization of hazard mitigation
and risk mitigation measures. The availability of quantitative
methods allows for a more rational decision-making process
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in which the costs and effectiveness of risk mitigation can be
compared and assessed.

Campanian pyroclastic covers are characterized by sev-
eral specific features (high porosity, significant water reten-
tion capacity, and intermediate saturated hydraulic conduc-
tivities) playing a relevant role for triggering (e.g., role of
antecedent precipitation or the persistency and/or magnitude
of a potential triggering event). Moreover, stratigraphic de-
tails like the actual grain size distribution, the presence of
pumice lenses, or the depth of pyroclastic deposits regulated
by the distance from the eruptive centers and wind direc-
tion or magnitude during the eruptions also make general-
izations within the same Campania region complex. Never-
theless, the framework developed for the pyroclastic covers
on the northern side of the Lattari Mountains (where Nocera
Inferiore is located) appears easily transferable to other con-
texts where precipitation observations and details about the
timing of flow-like movements are available. Similarly, the
climate simulation chain follows the state-of-the-art analysis
of impacts potentially induced by climate change. Finally,
the estimated increases in hazard were consistent with the
results reported in several works investigating the variation
in frequency of events in coarse-grained soils (Gariano and
Guzzetti, 2016).
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