Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-871-2023
https://doi.org/10.5194/nhess-23-871-2023
Research article
 | 
01 Mar 2023
Research article |  | 01 Mar 2023

Sensitivity analysis of a built environment exposed to the synthetic monophasic viscous debris flow impacts with 3-D numerical simulations

Xun Huang, Zhijian Zhang, and Guoping Xiang

Related subject area

Landslides and Debris Flows Hazards
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso, Charles L. Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci., 23, 643–666, https://doi.org/10.5194/nhess-23-643-2023,https://doi.org/10.5194/nhess-23-643-2023, 2023
Short summary
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023,https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management
Tom Birien and Francis Gauthier
Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023,https://doi.org/10.5194/nhess-23-343-2023, 2023
Short summary
Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023,https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023,https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary

Cited articles

Chen, M., Tang, C., Zhang, X., Xiong, J., and Li, M.: Quantitative assessment of physical fragility of buildings to the debris flow on 20 August 2019 in the Cutou gully, Wenchuan, southwestern China, Eng. Geol., 293, 106319, https://doi.org/10.1016/j.enggeo.2021.106319, 2021. 
Choi, S. K., Lee, J. M., and Kwon, T. H.: Effect of slit-type barrier on characteristics of water-dominant debris flows: small-scale physical modeling, Landslides, 15, 111–122, https://doi.org/10.1007/s10346-017-0853-4, 2018. 
Dall'Osso, F., Gonella, M., Gabbianelli, G., Withycombe, G., and Dominey-Howes, D.: A revised (PTVA) model for assessing the vulnerability of buildings to tsunami damage, Nat. Hazards Earth Syst. Sci., 9, 1557–1565, https://doi.org/10.5194/nhess-9-1557-2009, 2009. 
Dall'Osso, F., Dominey-Howes, D., Tarbotton, C., Summerhayes, S., and Withycombe, G.: Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: introducing the PTVA-4 model, Nat. Hazards, 83, 1229–1256, https://doi.org/10.1007/s11069-016-2387-9, 2016. 
Download
Short summary
A sensitivity analysis on the building impact force resulting from the representative built environment parameters is executed through the FLOW-3D model. The surrounding buildings' properties, especially the azimuthal angle, have been confirmed to play significant roles in determining the peak impact forces. The single and combined effects of built environments are analyzed in detail. This will improve understanding of vulnerability assessment and migration design against debris flow hazards.
Altmetrics
Final-revised paper
Preprint