Articles | Volume 20, issue 2
Nat. Hazards Earth Syst. Sci., 20, 581–601, 2020
https://doi.org/10.5194/nhess-20-581-2020

Special issue: Advances in extreme value analysis and application to natural...

Nat. Hazards Earth Syst. Sci., 20, 581–601, 2020
https://doi.org/10.5194/nhess-20-581-2020

Research article 26 Feb 2020

Research article | 26 Feb 2020

Landslide hazard probability and risk assessment at the community level: a case of western Hubei, China

Sheng Fu et al.

Related authors

Assessment of the physical vulnerability of buildings affected by slow-moving landslides
Qin Chen, Lixia Chen, Lei Gui, Kunlong Yin, Dhruba Pikha Shrestha, Juan Du, and Xuelian Cao
Nat. Hazards Earth Syst. Sci., 20, 2547–2565, https://doi.org/10.5194/nhess-20-2547-2020,https://doi.org/10.5194/nhess-20-2547-2020, 2020
Short summary
The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan'en County (Hubei, China)
Lixia Chen, Zizheng Guo, Kunlong Yin, Dhruba Pikha Shrestha, and Shikuan Jin
Nat. Hazards Earth Syst. Sci., 19, 2207–2228, https://doi.org/10.5194/nhess-19-2207-2019,https://doi.org/10.5194/nhess-19-2207-2019, 2019
Short summary

Related subject area

Landslides and Debris Flows Hazards
Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019)
Silvan Leinss, Enrico Bernardini, Mylène Jacquemart, and Mikhail Dokukin
Nat. Hazards Earth Syst. Sci., 21, 1409–1429, https://doi.org/10.5194/nhess-21-1409-2021,https://doi.org/10.5194/nhess-21-1409-2021, 2021
Short summary
Exploring the potential relationship between the occurrence of debris flow and landslides
Zhu Liang, Changming Wang, Donghe Ma, and Kaleem Ullah Jan Khan
Nat. Hazards Earth Syst. Sci., 21, 1247–1262, https://doi.org/10.5194/nhess-21-1247-2021,https://doi.org/10.5194/nhess-21-1247-2021, 2021
Short summary
Cascade effect of rock bridge failure in planar rock slides: numerical test with a distinct element code
Adeline Delonca, Yann Gunzburger, and Thierry Verdel
Nat. Hazards Earth Syst. Sci., 21, 1263–1278, https://doi.org/10.5194/nhess-21-1263-2021,https://doi.org/10.5194/nhess-21-1263-2021, 2021
Short summary
DebrisFlow Predictor: an agent-based runout program for shallow landslides
Richard Guthrie and Andrew Befus
Nat. Hazards Earth Syst. Sci., 21, 1029–1049, https://doi.org/10.5194/nhess-21-1029-2021,https://doi.org/10.5194/nhess-21-1029-2021, 2021
Short summary
Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the Mud Creek landslide, California
Mylène Jacquemart and Kristy Tiampo
Nat. Hazards Earth Syst. Sci., 21, 629–642, https://doi.org/10.5194/nhess-21-629-2021,https://doi.org/10.5194/nhess-21-629-2021, 2021
Short summary

Cited articles

Abdulwahid, W. M., and Pradhan, B.: Landslide vulnerability and risk assessment for multi-hazard scenarios using airborne laser scanning data (LiDAR), Landslides, 14, 1057–1076, https://doi.org/10.1007/s10346-016-0744-0, 2016. 
Ayalew, L., Yamagishi, H., and Ugawa, N.: Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan, Landslides, 1, 73–81, https://doi.org/10.1007/s10346-003-0006-9, 2004. 
Chen, H. X., Zhang, S., Peng, M., and Zhang, L. M.: A physically-based multi-hazard risk assessment platform for regional rainfall-induced slope failures and debris flows, Eng. Geol., 203, 15–29, https://doi.org/10.1016/j.enggeo.2015.12.009, 2016. 
Chen, L., Yin, K. L., and Dai, Y. X.: Building vulnerability evaluation in landslide deformation phase, J. Mount. Sci., 8, 286–295, https://doi.org/10.1007/s11629-011-2101-z, 2011. 
Chen, L., van Westen, C. J., Hussin, H., Ciurean, R. L., Turkington, T., Chavarro-Rincon, D., and Shrestha, D. P.: Integrating expert opinion with modelling for quantitative multi-hazard risk assessment in the Eastern Italian Alps, Geomorphology, 273, 150–167, https://doi.org/10.1016/j.geomorph.2016.07.041, 2016. 
Download
Short summary
In this study, we conducted a more detailed semiquantitative landslide risk assessment at a community level and scale of 1 : 10 000. In this manner, the case study computed the loss of lives and properties for each slope. The proposed procedure proved to be more useful in complementing risk assessment on the small scale of 100 000 in western Hubei, China.
Altmetrics
Final-revised paper
Preprint