Articles | Volume 18, issue 8
https://doi.org/10.5194/nhess-18-2295-2018
https://doi.org/10.5194/nhess-18-2295-2018
Research article
 | 
29 Aug 2018
Research article |  | 29 Aug 2018

Combining temporal 3-D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors

Megan van Veen, D. Jean Hutchinson, David A. Bonneau, Zac Sala, Matthew Ondercin, and Matt Lato

Related authors

SUPERVOXEL-BASED MULTI-SCALE POINT CLOUD SEGMENTATION USING FNEA FOR OBJECT-ORIENTED ROCK SLOPE CLASSIFICATION USING TLS
I. Farmakis, D. Bonneau, D. J. Hutchinson, and N. Vlachopoulos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2020, 1049–1056, https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1049-2020,https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-1049-2020, 2020
Three-dimensional rockfall shape back analysis: methods and implications
David A. Bonneau, D. Jean Hutchinson, Paul-Mark DiFrancesco, Melanie Coombs, and Zac Sala
Nat. Hazards Earth Syst. Sci., 19, 2745–2765, https://doi.org/10.5194/nhess-19-2745-2019,https://doi.org/10.5194/nhess-19-2745-2019, 2019
Short summary
Simulation of fragmental rockfalls detected using terrestrial laser scans from rock slopes in south-central British Columbia, Canada
Zac Sala, D. Jean Hutchinson, and Rob Harrap
Nat. Hazards Earth Syst. Sci., 19, 2385–2404, https://doi.org/10.5194/nhess-19-2385-2019,https://doi.org/10.5194/nhess-19-2385-2019, 2019
Short summary
Automated terrestrial laser scanning with near-real-time change detection – monitoring of the Séchilienne landslide
Ryan A. Kromer, Antonio Abellán, D. Jean Hutchinson, Matt Lato, Marie-Aurelie Chanut, Laurent Dubois, and Michel Jaboyedoff
Earth Surf. Dynam., 5, 293–310, https://doi.org/10.5194/esurf-5-293-2017,https://doi.org/10.5194/esurf-5-293-2017, 2017
Short summary

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

Abbott, B., Bruce, I., Keegan, T., Oboni, F., and Savigny, W.: Application of a New Methodooogy for the Management of Rockfall Risk Along a Railway, 8th International Association of Engineering Geology Conference, A Global View from the Pacific Rim, Vancouver, 1998a. 
Abbott, B., Bruce, I., Savigny, W., Keegan, T., and Oboni, F.: A Methodology for the Assessment of Rockfall Hazard Risk along Linear Transportation Corridors, 8th International Association of Engineering Geology Conference, A Global View from the Pacific Rim, Vancouver, BC, 1998b. 
Agisoft: Agisoft Photoscan Professional Edition, v. 1.2.3, Agisoft LLC, St. Petersburg, Russia, 2015. 
Besl, P. J. and McKay, N. D.: A Method for the Registration of 3-D Shapes, IEEE T. Pattern Anal., 14, 239–256, 1992. 
Bonneau, D. and Hutchinson, D. J.: Applications of Remote Sensing for Characterizing Debris Channel Processes, Landslides: Putting Knowledge, Experience and Emerging Technologies in to Practice, AEG Special Publication No. 27, 2017. 
Download
Short summary
Rockfalls present a hazard to railways in mountainous terrain. 3-D remote monitoring data can be used to identify events that occurred between data collections. Using a case study from British Columbia, we present a method combining 3-D rockfall event data with spatial rockfall simulations to provide a refined estimate of the frequency of rockfalls presenting a direct hazard to passing trains and railway infrastructure, which is often less than the total number of rockfalls that occurred.
Altmetrics
Final-revised paper
Preprint