Articles | Volume 18, issue 8
https://doi.org/10.5194/nhess-18-2295-2018
https://doi.org/10.5194/nhess-18-2295-2018
Research article
 | 
29 Aug 2018
Research article |  | 29 Aug 2018

Combining temporal 3-D remote sensing data with spatial rockfall simulations for improved understanding of hazardous slopes within rail corridors

Megan van Veen, D. Jean Hutchinson, David A. Bonneau, Zac Sala, Matthew Ondercin, and Matt Lato

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (08 Jul 2018) by Thomas Glade
AR by Megan van Veen on behalf of the Authors (25 Jul 2018)  Author's response   Manuscript 
ED: Publish as is (10 Aug 2018) by Thomas Glade
AR by Megan van Veen on behalf of the Authors (17 Aug 2018)  Author's response   Manuscript 
Download
Short summary
Rockfalls present a hazard to railways in mountainous terrain. 3-D remote monitoring data can be used to identify events that occurred between data collections. Using a case study from British Columbia, we present a method combining 3-D rockfall event data with spatial rockfall simulations to provide a refined estimate of the frequency of rockfalls presenting a direct hazard to passing trains and railway infrastructure, which is often less than the total number of rockfalls that occurred.
Altmetrics
Final-revised paper
Preprint