Articles | Volume 15, issue 5
https://doi.org/10.5194/nhess-15-997-2015
https://doi.org/10.5194/nhess-15-997-2015
Research article
 | 
20 May 2015
Research article |  | 20 May 2015

A study on the use of planarity for quick identification of potential landslide hazard

M. H. Baek and T. H. Kim

Related subject area

Landslides and Debris Flows Hazards
Multi-event assessment of typhoon-triggered landslide susceptibility in the Philippines
Joshua N. Jones, Georgina L. Bennett, Claudia Abancó, Mark A. M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 23, 1095–1115, https://doi.org/10.5194/nhess-23-1095-2023,https://doi.org/10.5194/nhess-23-1095-2023, 2023
Short summary
Antecedent rainfall as a critical factor for the triggering of debris flows in arid regions
Shalev Siman-Tov and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1079–1093, https://doi.org/10.5194/nhess-23-1079-2023,https://doi.org/10.5194/nhess-23-1079-2023, 2023
Short summary
Sensitivity analysis of a built environment exposed to the synthetic monophasic viscous debris flow impacts with 3-D numerical simulations
Xun Huang, Zhijian Zhang, and Guoping Xiang
Nat. Hazards Earth Syst. Sci., 23, 871–889, https://doi.org/10.5194/nhess-23-871-2023,https://doi.org/10.5194/nhess-23-871-2023, 2023
Short summary
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso, Charles L. Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci., 23, 643–666, https://doi.org/10.5194/nhess-23-643-2023,https://doi.org/10.5194/nhess-23-643-2023, 2023
Short summary
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023,https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary

Cited articles

Aleotti, P. and Chowdhury, R.: Landslide hazard assessment: summary review and new perspectives, Bull. Eng. Geol. Environ., 58, 21–44, 1999.
Atkinson, R. M. and Massari, R.: Generalised linear modelling of susceptibility to landsliding in the central Apennines, Italy, Comput. Geosci., 24, 373–385, 1998.
Catani, F., Farina, P., Moretti, S., Nico, G., and Strozzi, T.: On the application of SAR interferometry to geomorphological studies: Estimation of landform attributes and mass movements, Geomorphology, 66, 119–131, 2005.
Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V.: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues, Nat. Hazards Earth Syst. Sci., 13, 2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, 2013.
Dai, F. C. and Lee, C. F.: A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression, Earth Surf. Proc. Land., 28, 527–545, 2003.
Download
Short summary
This study focuses on identifying the geomorphological feature that controls the location of landslides. We propose generating eigenvalues from the axial orientation data that may tell ground characteristics. The preliminary landslide assessment using the proposed approach discriminates well the geomorphological feature between stable and unstable domains. Results are also useful in mapping the previous landslide inventory where the historical records of landslide incidents have vanished.
Altmetrics
Final-revised paper
Preprint