Articles | Volume 20, issue 12
https://doi.org/10.5194/nhess-20-3455-2020
https://doi.org/10.5194/nhess-20-3455-2020
Research article
 | 
16 Dec 2020
Research article |  | 16 Dec 2020

INSPIRE standards as a framework for artificial intelligence applications: a landslide example

Gioachino Roberti, Jacob McGregor, Sharon Lam, David Bigelow, Blake Boyko, Chris Ahern, Victoria Wang, Bryan Barnhart, Clinton Smyth, David Poole, and Stephen Richard

Related subject area

Landslides and Debris Flows Hazards
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso, Charles L. Bielders, Elise Monsieurs, Arthur Depicker, Benoît Smets, Théophile Tambala, Luc Bagalwa Mateso, and Olivier Dewitte
Nat. Hazards Earth Syst. Sci., 23, 643–666, https://doi.org/10.5194/nhess-23-643-2023,https://doi.org/10.5194/nhess-23-643-2023, 2023
Short summary
Spatio-temporal analysis of slope-type debris flow activity in Horlachtal, Austria, based on orthophotos and lidar data since 1947
Jakob Rom, Florian Haas, Tobias Heckmann, Moritz Altmann, Fabian Fleischer, Camillo Ressl, Sarah Betz-Nutz, and Michael Becht
Nat. Hazards Earth Syst. Sci., 23, 601–622, https://doi.org/10.5194/nhess-23-601-2023,https://doi.org/10.5194/nhess-23-601-2023, 2023
Short summary
Assessing the relationship between weather conditions and rockfall using terrestrial laser scanning to improve risk management
Tom Birien and Francis Gauthier
Nat. Hazards Earth Syst. Sci., 23, 343–360, https://doi.org/10.5194/nhess-23-343-2023,https://doi.org/10.5194/nhess-23-343-2023, 2023
Short summary
Using principal component analysis to incorporate multi-layer soil moisture information in hydrometeorological thresholds for landslide prediction: an investigation based on ERA5-Land reanalysis data
Nunziarita Palazzolo, David J. Peres, Enrico Creaco, and Antonino Cancelliere
Nat. Hazards Earth Syst. Sci., 23, 279–291, https://doi.org/10.5194/nhess-23-279-2023,https://doi.org/10.5194/nhess-23-279-2023, 2023
Short summary
Assessing uncertainties in landslide susceptibility predictions in a changing environment (Styrian Basin, Austria)
Raphael Knevels, Helene Petschko, Herwig Proske, Philip Leopold, Aditya N. Mishra, Douglas Maraun, and Alexander Brenning
Nat. Hazards Earth Syst. Sci., 23, 205–229, https://doi.org/10.5194/nhess-23-205-2023,https://doi.org/10.5194/nhess-23-205-2023, 2023
Short summary

Cited articles

Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling, Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, 2016. a
Alvioli, M., Guzzetti, F., and Marchesini, I.: Parameter-free delineation of slope units and terrain subdivision of Italy, Geomorphology, 358, 107124, https://doi.org/10.1016/j.geomorph.2020.107124, 2020. a
Aristotle: The Categories, 350 BCE. a
Association of Professional Engineers and Geoscientists of British Columbia: Guidelines for Legislated Landslide Assessments for proposed residencial development in BC, EGBC, Burnaby, British Columbia, Canada, Tech. Rep. May, 2010. a
Baum, R. L., Savage, W. Z., and Jonathan W., G.: Trigrs – A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0, USGS, Denver, Colorado, United States, Tech. rep., 2008. a
Download
Short summary
We show how INSPIRE, the European initiative to standardize data across borders, can be used to produce explainable AI-based applications. We do so by producing landslide susceptibility maps for the Veneto region in Italy. EU countries are mandated by law to implement the INSPIRE data framework by 2021, but they are aligning and serving INSPIRE data at a slow pace. Our paper can provide a boost to INSPIRE implementation as it shows the value of standardized data.
Altmetrics
Final-revised paper
Preprint