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Abstract. This study presents a landslide susceptibility map
using an artificial intelligence (AI) approach based on stan-
dards set by the INSPIRE (Infrastructure for Spatial Infor-
mation in the European Community) framework. INSPIRE
is a European Union spatial data infrastructure (SDI) ini-
tiative to standardize spatial data across borders to ensure
interoperability for management of cross-border infrastruc-
ture and environmental issues. However, despite the theo-
retical effectiveness of the SDI, few real-world applications
make use of INSPIRE standards. In this study, we show how
INSPIRE standards enhance the interoperability of geospa-
tial data and enable deeper knowledge development for their
interpretation and explainability in AI applications. We de-
signed an ontology of landslides, embedded with INSPIRE
vocabularies, and then aligned geology, stream network, and
land cover datasets covering the Veneto region of Italy to the
standards. INSPIRE was formally extended to include an ex-
tensive landslide type code list, a landslide size code list, and
the concept of landslide susceptibility to describe map appli-
cation inputs and outputs. Using the terms in the ontology,
we defined conceptual scientific models of areas likely to
generate different types of landslides as well as map poly-
gons representing the land surface. Both landslide models
and map polygons were encoded as semantic networks and,
by qualitative probabilistic comparison between the two, a
similarity score was assigned. The score was then used as
a proxy for landslide susceptibility and displayed in a web
map application. The use of INSPIRE-standardized vocabu-
laries in ontologies that express scientific models promotes
the adoption of the standards across the European Union and
globally. Further, this application facilitates the explanation

of the generated results. We conclude that public and private
organizations, within and outside the European Union, can
enhance the value of their data by making them INSPIRE-
compliant for use in AI applications.

1 Introduction

1.1 INSPIRE

Data accessibility and interoperability are key for multina-
tional cross-border applications and fundamental for eco-
nomic development (European Parliament and the Council,
2007). Different countries have different languages and data
standards, hindering infrastructure planning, disaster risk re-
duction initiatives, and effective legislative implementation.
To overcome these challenges, the European Union initiated
INSPIRE (Infrastructure for Spatial Information in the Eu-
ropean Community; Directive 2007/2/EC; European Parlia-
ment and the Council, 2007). INSPIRE is structured in 34
spatial data themes organized in three annexes. The themes
span administrative (e.g. street addresses) and environmen-
tal domains (e.g. geology), and all EU countries are man-
dated by law to have implemented the data framework by
2021 (European Parliament and the Council, 2014). Each
theme defines a data model and has adopted a set of vo-
cabularies to populate interoperable datasets based on that
data model. EU countries are aligning and serving INSPIRE
data at a slow pace, and currently relatively few INSPIRE-
compliant datasets are available across Europe (Cho and
Crompvoets, 2019). Conferences and competitions are cur-
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rently being organized to promote its implementation and
to show the potential impact of real-world applications built
on INSPIRE datasets (European Commission, 2019). This
project was first presented at one of these conferences, the
Inspire Helsinki 2019 data challenge under the “Let’s make
the most out of INSPIRE!” topic, where the project won first
prize.

1.2 Artificial intelligence

Artificial intelligence (AI) studies “the synthesis and anal-
ysis of computational agents that act intelligently” (Poole
and Mackworth, 2017). Part of acting intelligently is build-
ing models of the world that make predictions. Probabilistic
predictions are the most useful ones for subsequent decision
making and can be learned from data (Pearl, 1988). All mod-
els are based on human knowledge and data (observations
of the world). For some problem domains, society has col-
lected an overwhelming number of data, and still, useful hu-
man knowledge of the domain can be very vague. Machine
learning has made great progress recently for such cases, par-
ticularly with deep learning (Goodfellow et al., 2016). How-
ever, for domains with relatively limited data but that are
still very large in volume, human knowledge (which may
be represented in computers through the use of ontologies)
can complement the data to make useful predictions (Pearl,
1988). Many environmental problems do not have enough
data (e.g. lack of extensive landslide databases) to be solved
by deep learning but do have enough data to generate useful
products when combined with human expertise (expressed in
ontologies; Poole and Mackworth, 2017). The term artificial
intelligence is commonly used to indicate only the machine
learning part of the field, especially in the landslide litera-
ture (e.g. Dieu and Gjermundsen, 2020). In this paper we use
the term “AI” in its broader connotation, which also includes
the ontological method used in this paper. See below for the
description of the method and definition of ontologies.

1.3 The need for standards, ontologies, and taxonomies

Consistent, well-defined vocabularies and data standards are
essential in computer science applications, especially in AI.
For data to have meaning and to combine multiple datasets,
vocabularies must be consistent and clearly defined. Deep
learning techniques require meanings for the inputs and the
outputs, but the internal representations do not have well-
defined meanings, making the models very opaque (Marcus,
2018). Other representations, such as logical and probabilis-
tic representations, support internal reasoning using symbols
with well-defined meanings, which lend themselves to use in
explanations (Marcus and Davis, 2019).

Ontologies are “a specification of the meanings of the
symbols in an information system” (Poole and Mackworth,
2017). In particular, an ontology defines the vocabulary for
individuals and relationships within a knowledge domain.

Individuals may be concrete entities (e.g. a rock) or ab-
stract concepts (e.g. numbers); relationships are properties
that describe how individuals are connected. Typical exam-
ples of relationships include “is-a-kind-of”, “is-part-of”, “is-
superclass-of”, “has-some-property”; the ontology also de-
fines axioms controlling the use of the vocabulary for logi-
cal and thematic consistency (Poole and Mackworth, 2017).
Given these axioms, the vocabulary can be unambiguously
interpreted according to the rules of symbolic logic, and im-
plicit relationships between entities or instances of those en-
tities can be inferred.

Vocabularies can be Aristotelian taxonomies, which are
logically consistent and multi-hierarchical. Aristotelian tax-
onomies are constructed by defining concepts from their
relation to a more general parent concept (genus) and us-
ing differentiating properties (differentia) to distinguish con-
cepts within the same genus (Aristotle, 350 BC). For ex-
ample, “slides in soil” and “slides in rock” share the same
parent concept “slides”, and they are differentiated by the
property dealing with the material type, “soil” and “rock”,
which make them uniquely identifiable. Taxonomies based
on Aristotelian definitions support multi-hierarchical knowl-
edge networks and can be used by computers to make logical
inferences (Poole et al., 2009; Smith, 2003). The term “multi-
hierarchical” implies that there is more than one way to move
through a taxonomy to arrive at a particular node or term. For
example, the landslide taxonomy can be arranged based on
different properties. If the landslide types are firstly arranged
based on the type of movement and then based on the type
of material, one path within the taxonomy would be land-
slide > slides > slides in rock and slides in soil. Alternatively,
if the landslide types are arranged first based on the material
type and then on the movement type, the path of the taxon-
omy would be landslide > landslides in rock > slides in rock
and flows in rock. Both paths are valid, but they reach the
same concept in different ways. The natural hazard classifica-
tion code list extension for landslides presented in this paper
was prepared using the open-access Aristotelian Class Ed-
itor (ACE) software (Minerva Intelligence, 2019d). Knowl-
edge stored in a domain-specific ontology (e.g. geohazards)
can be accessed by computers, allowing for data investiga-
tion through various AI techniques, including probabilistic
matching between semantic networks, the technique used in
this study.

Significant progress has been made in the development of
taxonomies for geoscience information interchange by the
International Union of Geological Sciences (IUGS ) Com-
mission for the Management and Application of Geoscience
Information (CGI) Geoscience Terminology Working Group,
which produced the GeoSciML standard along with the Open
Geospatial Consortium (OGC; CGI, 2003). However, ontol-
ogy applications in earth sciences are scarce. Notable excep-
tions are in economic geology (Smyth et al., 2007), geohaz-
ards (Jackson Jr et al., 2008), and disaster risk reduction do-
mains (Phengsuwan et al., 2019; Sermet and Demir, 2019).
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The INSPIRE framework, through its standardized vocab-
ularies (code lists), provides a necessary foundation upon
which AI applications with explainable output can be con-
structed. INSPIRE application examples in landslide studies
include the LAND-deFeND Italian landslide database struc-
ture (Napolitano et al., 2018) and a deep learning algorithm
to map landslide susceptibility (Hajimoradlou et al., 2020).
In the implementation of deep learning by Hajimoradlou
et al. (2020), training features were labelled with INSPIRE-
compliant semantics to enable reproducibility of the experi-
ment by other researchers.

In this study, we present an AI-based landslide susceptibil-
ity application using a natural hazard ontology. We do so by
building from the ontology created by Jackson Jr et al. (2008)
and by embedding INSPIRE code lists wherever possible as
well as aligning input and output data to the INSPIRE data
standards.

1.4 Landslide susceptibility and hazard

Landslide susceptibility is defined as the relative spatial
probability of occurrence for a landslide based on the intrin-
sic properties of a site (SafeLand, 2011). The concept of sus-
ceptibility differs from hazard in that the temporal probabil-
ity of occurrence, the triggering factors, and the magnitude
of the event are not considered in the definition of a suscepti-
bility map (SafeLand, 2011; Van Den Eeckhaut and Hervás,
2012). To produce landslide susceptibility maps, three ap-
proaches are usually applied: statistical, physical, and expert-
based (SafeLand, 2011). Statistical methods rely on the anal-
ysis of landslide databases and their relation to landscape
properties (see review by Reichenbach et al., 2018), physi-
cal methods calculate the limit equilibrium between failure-
resisting and failure-driving forces in slopes (e.g. Baum et al.,
2008), and expert-based methods rely on expert opinion and
the assumption that influencing factors are known and are
specified in the models (Dai et al., 2002). The AI approach
used in this study is an example of the expert-based approach
as the models follow rules that represent the reasoning pro-
cess of a landslide expert, providing semi-quantitative sus-
ceptibility maps.

2 Methods

Figure 1 outlines the methodological workflow followed in
this study to produce explainable landslide susceptibility as-
sessments in the Veneto region of Italy. We extended IN-
SPIRE (Sect. 2.1); we constructed an ontology (Sect. 2.2);
and we defined expert models (Sect. 2.2.1) and instances,
represented by mapping polygons (Sect. 2.2.2). We then
compared the similarity of models and instances to produce
a matching score, which is used as a susceptibility indicator
(Sect. 2.2.3). Finally, the results are delivered in an interac-
tive web map (Sect. 2.2.4).

Figure 1. The workflow followed in this study and corresponding
method sections. We extended INSPIRE, defined an ontology, ex-
pert models and mapping instances. We compared models and in-
stances to deliver a susceptibility map which is available online.

2.1 INSPIRE extension

Technical guideline documents outline the data structure for
each theme within the INSPIRE directive, its encoding rules,
its metadata standards, and some of its use cases. Data struc-
tures are formally represented using Unified Modeling Lan-
guage (UML), modelling thematic entities as feature types,
defining properties for each feature type, and characterizing
relationships between feature types. Where applicable, stan-
dardized vocabularies are adopted for property value ranges.
INSPIRE themes can be understood as an ontology (See
Sect. 2.2 below) by defining various entities and the relation-
ships between them.

INSPIRE data models are implemented as Ge-
ography Markup Language (GML) application
schemas (https://inspire.ec.europa.eu/XML-Schemas/
Data-Specifications/2892, last access: 26 October 2020) and
serialized using Extensible Markup Language (XML). This
enables data distribution provided as Open Geospatial Con-
sortium (OGC)-compliant web services. Geospatial features
are located using vector-based spatial data. Feature prop-
erties have value types (e.g. geometry for vector datasets);
properties whose value ranges are controlled vocabularies
have values implemented as code lists. Code lists incorporate
vocabularies developed outside of INSPIRE (e.g. IUGS CGI
rock type taxonomy). Some code lists within INSPIRE are
not extensible, some are extensible with narrower values,
and some allow additional values at any level. Code list
values, definitions, and hierarchical structures are stored in
the INSPIRE registry (https://inspire.ec.europa.eu/codelist,
last access: 26 October 2020), making them accessible
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to and reusable by anyone. INSPIRE schemas can also
be extended to include additional concepts and/or feature
types. For this project, we worked with four INSPIRE
themes: Geology, Land Cover, Hydrography, and Natural
Risk Zones. The Natural Risk Zone application schema
was not fully adequate for this application as it lacked
the “landslide susceptibility” concept and “landslide type”
code lists (Tomas et al., 2015). We addressed this issue by
formally extending the Natural Risk Zone schema and the
natural hazard code list.

2.2 Ontologically grounded probabilistic matching

The method used to produce INSPIRE-based landslide sus-
ceptibility maps, uses qualitative probabilistic reasoning that
incorporates expert knowledge, making qualitative predic-
tions based on comparisons between models and instances
(e.g. Sharma et al., 2010; Smyth et al., 2007; Poole and
Smyth, 2005; Smyth and Poole, 2004). A model is a set of
rules defined a priori by an expert, based on the scientific lit-
erature, making use of the entities and properties defined in
the ontology. These models aim to represent expert concep-
tualized descriptions of a given phenomenon or entity (e.g.
landslide susceptibility). The properties used in a model de-
scription are concepts stored in the ontology, along with fre-
quency terms (e.g. soil slide – has slope – moderately steep
– always). Frequency terms used in this study are “always”,
“usually”, “sometimes”, “rarely”, and “never”. These terms
were chosen as they express experience-based judgements
that geoscience practitioners may use in field assessments.
The term “never” allows the system to explicitly deal with
negation (e.g. soil slide – has surficial material – bedrock –
never). The properties and the frequency terms are encoded
in semantic triple format (W3C Working Group, 2014), and
the resulting model is a semantic network. Semantic net-
works are a graph representation of knowledge, where nodes
are concepts, and edges are the semantic relation between
concepts (Shapiro, 1992); see Fig. 2 for example. Real-world
areas on the ground (map units – more generally referred to
as “instances”) are also described by semantic networks us-
ing the same properties stored in the ontology, but triples are
accompanied by Boolean qualifiers to represent presence or
absence of a specific property (e.g. polygon – has slope –
steep – present). Comparisons, referred to as matches, be-
tween instances and models are possible because models and
instances all use the same structured terminology, as con-
trolled by the ontology.

Similarity scores are awarded based on the type of match
between instance and model properties, the semantic dis-
tance in the taxonomy of compared property values, and the
model property frequency term (Fig. 2). Match types include
“exact”, “a kind of (AKO) exact”, and “possible”. An ex-
act match indicates that the property value term used in the
model is present in the instance (in Fig. 2a), in which case
a full score is awarded for this component of the compared

semantic networks. An AKO exact match indicates that the
property value term found in the instance is a kind of the
property value term found in the model (in Fig. 2b), in which
case a full score is also awarded. A “possible” match occurs
when the property value term in the instance is broader than
the property value term in the model, based on the defined
taxonomies, in which case the score is divided by the seman-
tic distance between the two terms. For example, “forest” is
a more specific type of “forest and semi-natural areas” (in
Fig. 2c) and results in the score being divided by 2. The score
is lower because the instance is only possibly the kind of
value that the model is looking for.

In this study, an exact match or an AKO exact match
of a property with frequency “always” scores 10 000, “usu-
ally” scores 9000, “sometimes” scores 1000, “rarely” scores
“100”, and “never” scores −10000; unmatched attributes are
awarded −10 points. These scores are an arbitrary represen-
tation of the degree of surprise that uses order-of-magnitude
numbers to distinguish qualitative measures. For an extensive
review of the probabilistic comparison method, see Smyth
and Poole (2004), Poole and Smyth (2005), Smyth et al.
(2007), and Sharma et al. (2010). This approach has been ap-
plied in economic geology to generate mineral deposit explo-
ration targets (Smyth et al., 2007) and in geohazard mapping
to produce landslide susceptibility maps (Jackson Jr et al.,
2008).

2.2.1 Landslide models

This paper presents an AI expert-based landslide susceptibil-
ity map for three different landslide types: debris flows, slides
in soil, and slides in rock for the Veneto region of Italy. These
three landslide types are conceptualizations of landslide
models defined using knowledge recorded in the scientific
literature. These landslide models are intended to be proof
of concept of models that can be used in the semantic ap-
proach proposed in this paper. In particular, some of the prop-
erties used in the models are drafted from literature analysis
of logging-related landslides in British Columbia, Canada
(Jackson Jr, 2019). Here we briefly summarize the mod-
els; detailed explanations of each property–value–frequency
combination are provided in Appendix C.

The “Debris Flow” model describes the channels that may
generate a debris flow. Debris flows are flow-like landslides
generated when saturated sediments move down a steep
channel. They can be originated when a slide in soil inter-
sects a flowing body of water or when saturated bed sedi-
ments are mobilized and begin flowing downstream. Debris
flows are usually triggered by intense and persistent rainfall
(Hungr et al., 2014). To visualize the Debris Flow model,
see the table in Appendix C or navigate to https://italy.
minervageo.com/debris-flow-model/ (last access: 26 Octo-
ber 2020).

The “Slides in Rock” model describes slopes that may
generate slides in rock. Slides in rock form when steep

Nat. Hazards Earth Syst. Sci., 20, 3455–3483, 2020 https://doi.org/10.5194/nhess-20-3455-2020

https://italy.minervageo.com/debris-flow-model/
https://italy.minervageo.com/debris-flow-model/


G. Roberti et al.: INSPIRE standards as a framework for artificial intelligence applications 3459

Figure 2. Graphical representation of the matching process between expert-defined models and map polygon instances. Panel (a) is an
example of an exact match between the property value “colluvium”; (b) is an example of a kind of (AKO) exact match because “gully
erosion” is a more specific kind of “erosional process”. The model is looking for an “erosional process” and found a “gully erosion”; (c) is an
example of a possible exact match because “forest and semi-natural areas” is a broader concept of “forest”. The model is looking for “forest”,
but we do not know whether the instance is a “forest”. We only know that the instance is “forest and semi-natural areas”. The vocabulary and
the hierarchy are controlled by the ontology. Note that frequency terms for model properties are not shown in this figure.

rock slopes and cliffs fail under the influence of gravity and
are commonly triggered by intense rainfall or earthquakes.
Slides in rock are usually very fast, and the failure can occur
along planar, curved, and/or multiple surfaces. This model
represents the collective class of landslides that have as ma-
terial “rock” and as movement type “slide”, including rota-
tional, planar, compound, wedge, and irregular slides in rock
(Hungr et al., 2014). Given the regional scale of this study,
we do not have the data resolution to determine the possi-
ble failure plane geometry. For example, we cannot identify
slopes more susceptible to planar rock slides than to rota-
tional rock slides. To visualize the Slides in Rock model,
see the table in Appendix C or navigate to https://italy.
minervageo.com/the-roberti-slides-in-rock-model/ (last ac-
cess: 26 October 2020).

The “Slides in Soil” model describes slopes that may gen-
erate slides in soil. Slides in soil are downslope movements
of soil under the influence of gravity, commonly triggered
by intense rainfall or earthquakes. They can be slow or fast,
and the failure can occur along one or many planar or curved
surfaces (Hungr et al., 2014). With slides in soil, we refer
to the collective class representing all landslides that have as
material “soil” and as movement type “slide”, including ro-
tational, planar, and compound clay, silt, sand, gravel, and
debris slides. Given the regional scale of this study, we do
not have the data resolution to determine the possible failure
plane geometry and the specific kind of soil that is involved
in the failure. To visualize the Slides in Soil model, see the
table in Appendix C or navigate to https://italy.minervageo.
com/slides-in-soil/ (last access: 26 October 2020).

In the presence of higher-resolution information such as
rock bedding orientation or shear geometry and stratigra-
phy in soil masses, susceptibility to specific kinds of rock
slides (e.g. planar vs rotational) or different kinds of slides in
soil (e.g. clay compound slide vs. clay planar slide) may be
mapped.

2.2.2 Map polygon instances

The definition of the mapping unit is a critical step in any
landslide susceptibility mapping application, and there are
many different approaches to subdividing the area of inter-
est to identify areas susceptible to slides in soil or rock (see
review by Guzzetti et al., 1999). For this study, we used
slope units, which are a geomorphic representation of sin-
gle slopes bounded by drainage and divide lines (Guzzetti
et al., 1999), as mapping units. We used the r.slopeunits soft-
ware to automate the slope unit delineation (Alvioli et al.,
2016, 2020). We used stream line vector shape files provided
by the Veneto Regional Government, buffered by a distance
of 5 m as mapping units to map debris flow susceptibility. In
total, the region of Veneto was subdivided into 93 262 poly-
gons, of which 9302 are stream buffer polygons, and 83 960
are slope unit polygons.

We used a spatial overlay analysis to aggregate data de-
scribing the physical properties of the mapping units. The
analysis aggregated the properties from all features that in-
tersect the mapping units. For each property in an input layer,
an aggregation type is specified as either (a) list, whereby all
of the intersecting properties are concatenated into the map-
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Table 1. R.avaflow parameters for slides in soil, slides in rock, and
debris flow run-out calculations.

Variables (unit) Slides Slides Debris
in soil in rock flow

Solid fraction (%) 60 70 60
Fluid fraction (%) 40 30 40
Solid fraction internal friction angle (◦) 18 18 5
Solid fraction basal friction angle (◦) 10 10 4
Fluid fraction internal friction angle (◦) 0 0 0
Fluid fraction basal friction angle (◦) 0 0 0
Solid fraction viscosity (m2 s−1) −30 −30 −5
Fluid fraction viscosity (m2 s−1) −3 −3 −3

ping unit (e.g. multiple rock types), or (b) Boolean evalua-
tion, which checks whether or not the mapping unit was in-
tersected by a specific input feature (e.g. a fault).

The properties describing each mapping unit polygon were
converted into semantic networks, one network for each
polygon. This conversion allows for semantic reasoning to
compare and rank, based on similarity, the mapping units
(hereon instances) against the expert-defined landslide mod-
els to evaluate landslide susceptibility.

2.2.3 Matching, susceptibility, and run-out

The similarity score between a given model and instance is
used as a proxy of landslide susceptibility. A high similar-
ity score between an instance and a landslide susceptibility
model signals a high susceptibility to that type of landslide.
We deliver the similarity score between models and instances
as susceptibility on the output maps.

After the susceptibility assessment, a first-order estimate
of hazard is provided by calculating the likely extent of
landslide run-out for the most susceptible (99.9th percentile
score, i.e. top 1 in 1000) instances for each model. Various
physical methods have been developed to calculate potential
landslide run-out given the physical properties of the mate-
rial and the topography (see review by McDougall, 2016).
To compute the potential run-out extents, we applied the
r.avaflow code (Mergili et al., 2017), which is an open-source
software package implementing the two-phase debris flow
model developed by Pudasaini (2012). Physical model pa-
rameters for “Slides in Rock” are inferred from the back-
calculations of the recent Mt. Joffre landslide, in British
Columbia, Canada (Friele et al., 2020); “Slides in Soil” and
“Debris Flow” parameters use the default r.avaflow parame-
ters for those landslide types (Table 1).

Various landslide size classes were simulated for each
map instance, ranging from class 4 to class 6 (Jakob, 2005).
Classes 4 to 6 were chosen to provide a preliminary hazard
assessment, where a class 4 event may have an approximate
return interval of hundreds of years, and class 6 events are
very unlikely and extreme events with return intervals on the
order of thousands of years (Jakob, 2005).

2.2.4 Web map

This study’s landslide susceptibility maps and hypothetical
landslide run-outs for slides in soil, slides in rock, and de-
bris flows are delivered as an interactive web map based on
OpenLayers (MetaCarta, 2005) and React (Facebook, 2013).
Input layers are hosted through a GeoServer (The Open Plan-
ning Project, 2001) with a PostGIS (Refraction Researtch,
2001) back-end database. INSPIRE-aligned layers are hosted
on Hale Connect (WeTransform, 2014), a platform used to
host and serve INSPIRE-compliant data.

3 Results

3.1 INSPIRE Natural Risk Zone extension

To develop an INSPIRE-compliant AI application to map
landslide susceptibility, we needed to extend the INSPIRE
Natural Risk Zone theme to include the concept of land-
slide susceptibility and the specific code list dealing with
landslide terminology. The INSPIRE extensions developed
in this project are documented and stored in the Minerva
Re3gistry (Minerva Intelligence, 2019a), a version 1.3.1 of
the INSPIRE registry based on the Re3gistry software (ISA,
2016). The registry service is packaged within a collection
of Docker (Hykes, 2013) containers and hosted on a local
server.

The Natural Risk Zone core (NZ-core) schema extension,
which includes the Natural Risk Zone Susceptibility feature
type, was based on SafeLand recommendations (SafeLand,
2011). The Natural Hazard classification code list was ex-
tended (Minerva Intelligence, 2019b) to include a classifica-
tion of various landslide types using the updated Varnes land-
slide classification (Hungr et al., 2014), which is a landslide
classification widely adopted within the scientific commu-
nity, and a new code list of landslide size classes (Minerva In-
telligence, 2019c) based on Jakob (2005). The landslide size
code list contains 10 landslide size classes based on landslide
volume and descriptions of approximate damage potential.

3.1.1 Code list extension

The Natural Hazard classification code list extension for
landslides considers material type and failure movement,
splitting the tree first on type of movement and then on type
of material following Hungr et al. (2014) (Fig. 3). Other
properties, such as water content, depth of failure, rate of
movement, loading state, channelized state, and failure plane
geometry (see Appendix B), are used to describe the indi-
vidual landslide types as the unique combination of these
properties allows for unambiguous classification in an Aris-
totelian taxonomy. We used these properties because, even
if not shown in the final taxonomic tree, they are explicitly
applied in the wordy description of landslide types by Hungr
et al. (2014).
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The formal extension registration process via the INSPIRE
registry software does not enable the representation of such
multi-hierarchical classifications. Because of this we had to
work with a single tree hierarchy and consequently chose to
first divide the classes based on type of failure followed by a
division based on the type of movement (Fig. 3).

3.1.2 Schema extension: susceptibility

The INSPIRE Natural Risk Zone schema includes hazard
and risk feature types, but the concept of susceptibility as
a feature type is missing. To overcome this problem, we ex-
tended the INSPIRE Natural Risk Zone core XML schema,
adding a Natural Risk Zone Susceptibility schema (Minerva
Intelligence, 2019e). The Natural Risk Zone Susceptibility
schema includes abstract susceptibility area and susceptibil-
ity area feature types (Fig. 4). The susceptibility area feature
type is modelled following the structure of the hazard area
and risk zone feature types in the INSPIRE Natural Risk
Zone core schema. Susceptibility area has three elements:
Geometry, Influencing Factor, and Relative Spatial Likeli-
hood of Occurrence (Fig. 4). Geometry, as with all INSPIRE
vector datasets, is the geometric representation of the ex-
tent of the feature on the earth’s surface as a spatial feature.
Influencing Factors are defined as the intrinsic, preparatory
variables which make an area susceptible to a hazard (Safe-
Land, 2011). Influencing Factors are unbounded in multiplic-
ity (i.e. can be as many as needed) and can be defined quali-
tatively or quantitatively. Qualitative Influencing Factors are
expressed as a string, while quantitative Influencing Factors
are expressed as GML:MeasureType (Fig. 4). Whether de-
fined quantitatively or qualitatively, the Influencing Factor
can also define a DataSetType attribute, such as slope or air
quality. Influencing Factors are used in the calculation of Rel-
ative Spatial Likelihood of Occurrence, which is an element
that can be quantitatively or qualitatively defined (Fig. 4).
The Relative Spatial Likelihood of Occurrence refers to val-
ues that represent the spatial probability of occurrence of a
specific hazard type given the influencing factors present in
the area (SafeLand, 2011). The Influencing Factor element
allows end users of susceptibility area datasets to understand
which known conditions of the specific area led to the resul-
tant susceptibility.

3.2 Landslide susceptibility mapping in Veneto

3.2.1 Input data

For this study, we used open-access datasets from the Veneto
Region Geoportal and other sources (Table 2 and 3). Align-
ing all input datasets was beyond the scope of this project. We
did, however, want to show the value of INSPIRE-aligned
data and therefore aligned stream network, CORINE Land
Cover, bedrock geology, and the Italian Landslide Inventory
(IFFI; Table 2) to INSPIRE using Hale Studio (WeTrans-

form, 2008). Figure 5 shows how different tools in Hale Stu-
dio are used to align properties from the source dataset to the
target dataset. For example, the field “eta” – “age” in Italian
– of the original Veneto dataset was directly mapped to four
different INSPIRE fields: the olderNamedAge.href and title
and the youngerNamedAge.href and title. Note that older-
NamedAge.href and youngerNamedAge.href are hyperlinks
to the code list value ID, and the title is the actual code
list term from the GeochronologicEraValue code list. This
alignment is done with many classification methods, includ-
ing Groovy scripts, formatted strings, and assign-alignment
tools. For further explanation on term alignments, refer to
the documentation of Hale Studio (WeTransform, 2008).
Datasets used that were not compliant with INSPIRE include
lakes, watersheds, permafrost, fire, slope angle, faults, soil,
roads, and railways (Table 3).

3.2.2 Web map

The 83 960 slope units and 9302 stream buffer instances
(Fig. 6) were encoded with the available data, then trans-
formed from vector files into semantic network format.
Then, each polygon was matched against the expert-based
Slides in Soil, Slides in Rock, and Debris Flow models and
colour-coded according to matching-score percentile to por-
tray landslide susceptibility (Fig. 6). The left-side panel of
the web map shows the landslide model layers, the refer-
ence layers, and different base maps (Fig. 7). By clicking
on a polygon (instance), a pop-up window opens (Fig. 7):
this window contains the name and hyperlink to the IN-
SPIRE registry code list definition of the landslide type in-
vestigated, the attributes that are present in the mapping unit
(e.g. bedrock lithology, erosional process, etc.), the instance
percentile rank and total match score, the hyperlink to the
comparison of the instance against other landslide models
(e.g. the Slides in Rock model), and (only for the 99.9th per-
centile score, top 1 in 1000) buttons to turn on the display of
landslide run-out for different landslide classes as well as the
hyperlink to the match report.

The match report is a detailed table showing the results
from the model instance semantic matching, ensuring the
explainability of the results. Each line corresponds to a
property–value–frequency term (e.g. has slope – moderately
steep – always) comparison between the model and the in-
stance, how they match (with a hyperlink to textual expla-
nation on how the score was awarded), the numerical score
value (see Table 4 for example), a textual explanation on why
that attribute was chosen, and the original data value (Ta-
ble 5). An “advice” button opening textual advice expressing
which of the instance’s unmatched attributes may change the
score is available. This advice is a sort of data advice: it in-
vites the user to check in the field or in some other databases
if, for example, a fault is present in that specific instance.

https://doi.org/10.5194/nhess-20-3455-2020 Nat. Hazards Earth Syst. Sci., 20, 3455–3483, 2020



3462 G. Roberti et al.: INSPIRE standards as a framework for artificial intelligence applications

Figure 3. Natural Hazard category code list extension for landslides.

4 Discussion

4.1 INSPIRE as a framework for explainable AI

Across society, the use of numerous complex and non-
standardized earth science taxonomies results in interoper-
ability limitations, which hinder the widespread implemen-
tation of explainable AI solutions to natural-hazard-related
problems. This is evident in the landslide domain, where
data layers for landslide susceptibility analysis, ranging from
landslide databases (Van Den Eeckhaut et al., 2013) to geo-
morphology maps, vary across regions and countries. Conse-

quently, despite the wealth of scientific literature on land-
slides in general and landslide susceptibility in particular
(Reichenbach et al., 2018), broad-scale operational land-
slide hazard management systems are scarce (Guzzetti et al.,
2020), resulting in significant human and economic losses
(Froude and Petley, 2018).

INSPIRE partially addresses this problem by providing
standardized data structures for data hosting and standard
terminology to use within those structures. This study il-
lustrates that, once INSPIRE-compliant, European data can
be subjected to analytical methods that can be applied for
practical application to multiple other equivalent INSPIRE-
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Figure 4. UML diagram showing Natural Risk Zone Susceptibility schema extension of the Natural Risk Zone core schema.

Table 2. INSPIRE-compliant layers.

Layer Description Source URL (last ac-
cess: January 2020)

Streams Hydrographic network in the Veneto region, including streams,
rivers, and other inland-flowing waterbodies.

https://idt2.regione.
veneto.it

Land Cover (CORINE) Land cover units in the Veneto region. The CORINE Land
Cover (CLC) classification includes 44 classes and was last up-
dated in 2018.

https://land.copernicus.
eu/pan-european/
corine-land-cover

Geology Bedrock lithology in the Veneto region. http://www.pcn.
minambiente.it/mattm/
en/wfs-service/

IFFI Landslide points and areas Landslides that have been identified in the Veneto region as part
of the IFFI project. The INSPIRE Natural Hazard category code
list was extended to include the updated Varnes landslide clas-
sification (Hungr et al., 2014), and the data were aligned to this
standard.

http://www.pcn.
minambiente.it/mattm/
en/wfs-service/
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Table 3. Layers not compliant with INSPIRE standards.

Layer Description Source URL (last access: January 2020)

Lakes Lakes in the Veneto region. https://idt2.regione.veneto.it

Watersheds Watersheds in the Veneto region, derived from a digital http://tinitaly.pi.ingv.it/
elevation model from the TINITALY project made available by
the National Institute of Geophysics and Volcanology (INGV).

Permafrost Permafrost derived from the Global Permafrost Zonation http://www.geo.uzh.ch/microsite/cryodata/
Index Map (Gruber, 2012).

Fires Location and date of past forest fires in the Veneto region. https://idt2.regione.veneto.it

Slope The gradient of the slope in the Veneto region, http://tinitaly.pi.ingv.it/
derived from a digital elevation model from the
TINITALY project made available by
the National Institute of Geophysics and Volcanology.

Faults Faults in the Veneto region, published as part of http://diss.rm.ingv.it/diss/index.php/DISS321
the Database of Individual Seismogenic Sources (DISS) provided
by the National Institute of Geophysics and Volcanology (INGV).

Soils Soil map of the Veneto region, including https://idt2.regione.veneto.it
information about surficial deposit genesis,
material, texture, thickness, geomorphic form, and process.

Railroads Railroad network in the Veneto region. https://idt2.regione.veneto.it

Roads Road network in the Veneto region. https://idt2.regione.veneto.it

Figure 5. Visualization of INSPIRE data alignment within Hale Studio. The left side shows the source Veneto Lithology shape file, the right
side shows the target GeologicUnit feature type within the INSPIRE Geology schema, and the centre shows the classification method used
to align the data.
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Figure 6. Web map interface showing susceptibility to slides in soil in Veneto, Italy. Colours range from blue (0–20 score percentile) to dark
green (20–40 score percentile), light green (40–60 score percentile), yellow (60–80 score percentile), red (80–99.9 score percentile), and
purple (99.9–100 score percentile). Base map credit: © OpenTopoMap (CC-BY-SA).

Figure 7. Screen capture of the web map showing layer list, information pop-up window, map legend, and landslide run-out. Base map credit:
© OpenTopoMap (CC-BY-SA).
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Table 4. Simplified match report table showing instance 117309 compared to the Slides in Soil model. The match report is accessible online
by clicking https://spot.italy.minervageohazards.com/match_results?if_id=34434&t_id=117309 (last access: 26 October 2020).

Model Instance Results

Property Value Freq. Property Value Freq. Match type Score

Has geomorph process Erosional process Always Has geomorph process Gully erosion Present AKO match 10 000
Has surficial material Colluvium Always Has surficial material Colluvium Present Exact match 10 000

Table 5. Simplified match report table showing the comment for the model property “has erosional process” matching the instance property
“gully erosion”. The full match report is accessible online at https://spot.italy.minervageohazards.com/match_results?if_id=34434&t_id=
117309 (last access: 26 October 2020).

Model Instance Comment Original value

Erosional process – always Gully erosion – present Active erosional processes are possible
indicators of landslide activity as land-
slides occur where landslides have oc-
curred before.

Rock fall, gully erosion, ero-
sional process, karst.

compliant datasets. For example, the same landslide-focused
ontology that uses terminology and knowledge models based
on INSPIRE code lists used in this project has been applied
in south-western British Columbia, Canada (Minerva Intelli-
gence, 2019f).

By maintaining carefully curated standards, INSPIRE can
play a critical role in AI applications that seek to be “explain-
able” (Gilpin et al., 2019). Its code lists can be mapped into
ontology properties, enabling machines to make inferences
of semantic and hierarchic relations based on data. The ex-
plainability in the application presented in this study is pro-
vided in the form of a comprehensive match report, which
can be opened via an information pop-up for each instance.
The match report provides the user with complete access to
the logic that drives the AI reasoning engine, allowing in-
terrogation of the results displayed on the map. By embed-
ding explanations in a user-friendly interface, ontologically
based AI can improve the understanding of complex geospa-
tial problems by decision makers, insurance companies, and
the general public.

Public and private organizations, within and outside the
European Union, can significantly enhance the value of the
data they collect and publish by using INSPIRE-compliant
standards not only in natural hazard mapping but also in other
domains. A comparative study of regional spatial data infras-
tructure (SDI) in the context of INSPIRE implementation
(Craglia and Campagna, 2010) showed that inefficient data
access and use at the European level results in annual eco-
nomic losses in the EUR 100–200 million range. The same
study shows that the regional SDI of Lombardy, Italy, al-
lowed savings of EUR 3 million per year to companies work-
ing in environmental impact assessments (EIAs) and strate-
gic environmental assessments (SEAs). Savings in the same

order of magnitude can be expected by adopting INSPIRE
standards in the domain of geological-hazard assessment.

4.2 INSPIRE extension and limitations

INSPIRE-compliant datasets are still rare across European
countries in general and in Italy in particular (Cetl et al.,
2017; Mijić and Bartha, 2018; Cho and Crompvoets, 2019).
Consequently, we were unable to identify a jurisdiction in
Europe with INSPIRE-compliant datasets for all the inputs
necessary for this study. Therefore, instead of using already-
compliant data, a region optimal for demonstrating the inter-
relationship between INSPIRE and explainable AI was cho-
sen, and some of the data for that region was made INSPIRE-
compliant. In doing so, the study provides both a case study
of dealing with non-INSPIRE-compliant data and an illus-
tration of the rewards achievable by making a coherent set of
data INSPIRE-compliant.

The code lists and application schemas in the INSPIRE
Natural Risk Zone theme lacked the level of detail neces-
sary for this application. This is understandable as, given
the broad scope of the directive, schemas lack the neces-
sary granularity for specific applications. INSPIRE is in-
tended to be used as an overarching umbrella under which
domain-specific applications can find their place by extend-
ing it where necessary. The Natural Risk Zone theme (Tomas
et al., 2015) and the extension presented in this work are an
example of using this extension facility. Within the Natural
Risk Zone theme, the Natural Hazard category value code
list includes geological and hydrological hazards, including
“flood” and “landslide”, but the different subclasses of floods
and landslides are not specified. For this kind of landslide
susceptibility assessment, the clear definition of landslide
types, landslide size classes, and susceptibility was funda-
mental. For example, a debris flow, which moves rapidly
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(metres per second), and an earth flow, which may move
slowly (metres per year), present entirely different hazards;
they can both destroy property, but it is unlikely for an earth
flow to result in fatalities, while the opposite can be said of
debris flows (Hungr et al., 2014). The definition of landslide
sizes is also important: a size class 1 debris flow has a smaller
impact area than a size class 6 event, but, by having a higher
frequency, it may result in greater losses (Jakob, 2005).

From a data structure perspective, INSPIRE code lists can-
not currently host multi-hierarchical taxonomies. This limits
the nature of reasoning that can be brought to bear on them.
We understand the technical difficulties in handling multi-
hierarchical taxonomies but hope that future versions of the
registry software will be able to handle these complex knowl-
edge representations.

The INSPIRE Natural Risk Zone theme also lacks the def-
inition of susceptibility as a concept and feature type. The
term susceptibility is not implemented as a feature type be-
cause for most hazards (e.g. floods and earthquakes), the con-
cept is embedded within the concept of hazard likelihood
(Tomas et al., 2015). This does not apply in the landslide do-
main, where susceptibility and hazard are distinct concepts
(e.g. Van Den Eeckhaut and Hervás, 2012). In this study,
we implemented the susceptibility feature type. Although we
applied this feature type in the landslide domain, it will be
useful for other natural hazard applications, when the spatial
likelihood of hazard occurrence must be expressed separately
from the general concept of hazard likelihood.

The extensibility of INSPIRE allows for domain-specific
applications, like the approach presented in this paper, to
fit within the INSPIRE framework. However, problems may
also arise from the fact that INSPIRE is extensible. Extensi-
bility allows greater precision in terminology and schema for
a specific application, but this allows different public and pri-
vate institutions to implement separate and eventually incom-
patible extensions. For example, another landslide classifica-
tion may be implemented by another institution: this imple-
mentation may not be interoperable with the one presented
in this study but will have the same INSPIRE compliance,
leading to two conflicting standards. Much work remains at
the level of thematic clusters to implement as many standard-
ized vocabularies and schemas as possible. Our extension is
open and free, and we hope that other entities will adopt it
for other landslide applications.

4.3 Ontological probabilistic matching for landslide
susceptibility mapping

The semantic AI system applied in this study aimed to repli-
cate the reasoning with uncertainties typical of geological
assessments, applying the terminology that geological and
geotechnical professionals use in their daily practice (Smyth
et al., 2007). Since they are based on expert-defined mod-
els, the landslide susceptibility maps produced in this study
are comparable to qualitative heuristic assessments (Safe-

Land, 2011). The choice of using a qualitative method for
landslide susceptibility assessment is in contrast with recent
recommendations for the application of quantitative methods
(Corominas et al., 2014). However, in current professional
geological assessments and geomorphological mapping ap-
plications, expert judgement is still widely applied (e.g.
Association of Professional Engineers and Geoscientists of
British Columbia, 2010; Guzzetti et al., 2012), and quantita-
tive (statistically and physically based) methods rely on data
that are not always available or are of unknown quality. For
example, landslide databases necessary for statistically based
susceptibility mapping are often incomplete, inaccurate, and
geographically limited (Guzzetti et al., 2012). Further, the
geotechnical parameters necessary for running physical mod-
els are usually approximated to carry out regional-scale stud-
ies (e.g. Mergili et al., 2014).

The semantic AI system applied in this study can be used
in cases of data scarcity and, if coupled with numerical meth-
ods, can improve the explainability of predictions. For exam-
ple, by embedding the ontology concepts related to statistical
parameters (e.g. receiving operating curves, confidence inter-
vals) or physical parameters (e.g. friction angles, viscosity),
it will be possible for the numerical outputs of quantitative
methods to be explained in natural language, helping to re-
duce the gap between scientists and decision makers (New-
man et al., 2017).

The main goal of this paper is not to present the seman-
tic matching approach but to show an example of how to
modify INSPIRE to make it possible to use for landslide-
specific applications. By suggesting these landslide-specific
schema and code list extensions, we lay the foundation for
INSPIRE-compliant landslide susceptibility studies. Other
organizations can build on top of these extensions, and fu-
ture landslide susceptibility applications can be compared as
they formally refer to the same data structure and seman-
tics. Note that we neither force any specific data and mod-
elling variable selection nor modelling approach for a land-
slide susceptibility, hazard, or risk calculation. Such an effort
is beyond the scope of this paper and, to some extent, has
already been addressed by the SafeLand project (e.g. Safe-
Land, 2011); rather, we provide the data structure and se-
mantics to store and share whichever method has been cho-
sen by the modeller. For example, data selection for calcula-
tion of landslide susceptibility is encompassed in the schema
structure under “Influencing Factor”, which is “unbounded
in multiplicity and can be defined qualitatively or quantita-
tively”, leaving a broad range of possibilities to the modeller.
Regarding the data quality, it is discussed in the Natural Risk
Zone schema, and it refers to ISO standards (INSPIRE The-
matic Working Group Natural Risk Zones, 2013). However,
we recognize that specific code lists (semantics) dealing with
data quality and model uncertainty are missing. We hope that
the INSPIRE thematic group will address this point.
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5 Conclusions

This study presents an AI method, based on semantic net-
work comparison, to produce landslide susceptibility maps
using an ontology and standardized taxonomies within the
framework provided by the INSPIRE Natural Risk Zone
theme. This method does not need an accurate landslide in-
ventory to make predictions as it uses qualitative probabilis-
tic reasoning that incorporates expert knowledge. We pro-
duced susceptibility maps for debris flow, slides in soil, and
slides in rock for the province of Veneto, Italy. To produce
the maps for specific landslide types, we extended the Natu-
ral Risk Zone theme to encompass both the concept of sus-
ceptibility and the different types of landslides. In particular,
we registered a landslide classification extension of the Natu-
ral Hazard category code list, a landslide size class code list,
and susceptibility area and abstract susceptibility area fea-
ture type schema extensions. After defining the extension, we
aligned key input layers (geology, streams, and land cover)
to INSPIRE and, by using an ontologically grounded proba-
bilistic matching algorithm, we produced the landslide sus-
ceptibility layers. The processing outputs were mapped to the
Natural Risk Zone Susceptibility schema extension. Then,
potential impact zones of landslides for multiple landslide
size classes were physically modelled for a subset of the in-
stances with the highest susceptibility scores. Finally, the re-
sults were presented in a user-friendly interface, embedding
plain-language explanations on how the score was assigned
and advising on how to improve the matching.

We have demonstrated the value of INSPIRE compliance
by showing how it enhances information and knowledge in-
teroperability and allows for explainability in AI applica-
tions by standardized interrogation of their inputs and out-
puts. Ontologies provide the formal structure for INSPIRE
code lists to run algorithms similar to that applied here. The
maps can explain the scientific results that they portray, and
consequently improve the understanding of complex geospa-
tial problems not only by domain experts but also by decision
makers and other non-specialized interested parties.

This study also illustrates that, in their current state of de-
velopment, the INSPIRE standards are not sufficiently ex-
pressive to support complex landslide susceptibility map-
ping. We provided an example of how INSPIRE’s exten-
sion capabilities may be implemented to add the required
expressivity. Through its Re3gistry register, this extension
framework ensures that the expressivity extensions are doc-
umented and available to all interested parties for reuse. In
doing so, it sets the context for the ongoing refinement of
standards by the INSPIRE thematic committees.

Nat. Hazards Earth Syst. Sci., 20, 3455–3483, 2020 https://doi.org/10.5194/nhess-20-3455-2020



G. Roberti et al.: INSPIRE standards as a framework for artificial intelligence applications 3469

Appendix A: Dictionary of terms

Term Description
Code list A dataset specifying terms for populating INSPIRE properties that require controlled vocabulary.
CLC CORINE Land Cover, a classification system for land cover based on vegetation and land use.
Feature type A data type representing a thematic entity in a domain of interest, typically with some geospatial location

specified by vector-based spatial data.
IFFI Italian Landslide Inventory.
Instance A data item that represents an individual, specific real-world entity; for this application an instance is

a spatial feature, either a slope unit polygon or a stream buffer polygon.
Model A conceptualization of the entities, properties, and relationships in some domain of interest,

in this case landslides. Three landslide models were used in this project:
Debris Flow, Slides in Soil, and Slides in Rock.

Ontology A formal representation of a conceptualization of the entities, properties, relationships, and rules
describing the relation between the entities in some domain of interest.

Semantic network A graph network of arcs and nodes that represent concepts in a domain of interest.
Schema A representation of a data model describing the structure of a data theme.
Slope unit A map unit polygon that is derived from the digital elevation model,

defined by hydrologic drainage and divide lines.
Taxonomy Hierarchical classification scheme based on shared characteristics between entities.
Triple A semantic triple is a subject–object–predicate expression that asserts a fact,

and it is the basic unit of a semantic network.

https://doi.org/10.5194/nhess-20-3455-2020 Nat. Hazards Earth Syst. Sci., 20, 3455–3483, 2020



3470 G. Roberti et al.: INSPIRE standards as a framework for artificial intelligence applications

Appendix B: Properties used for the landslide
classification

Table B1. Properties used for the definition of the Aristotelian taxonomy of landslides.

Property Property defi-
nition

Property value Property value definition

Type of
movement

Landslide
movement
types (Hungr
et al., 2014)

Fall A fall starts with the detachment of soil or rock from a steep slope along
a surface on which little or no shear displacement takes place. The mate-
rial then descends largely through the air by falling, saltation, or rolling
(Cruden and Couture, 2011).

Topple A topple is the forward rotation of material about a point or axis below
the centre of gravity of the displaced mass (Cruden and Couture, 2011).

Slide A slide is a downslope movement occurring dominantly on surfaces
of rupture or relatively thin zones of intense shear strain (Cruden and
Couture, 2011).

Spread Spread is an extension of mass combined with a general subsidence
of an upper fractured mass of material into softer underlying material
(Cruden and Couture, 2011).

Flow A flow is a spatially continuous movement in which surfaces of shear
are short-lived, closely spaced, and not usually preserved (Cruden and
Couture, 2011).

Slope de-
formation

Slow, sometimes unmeasurable deformation of slopes (Hungr et al.,
2014).

Material Landslide-
forming
material types
(Hungr et al.,
2014)

Ice Glacier ice or other solid water on steep slopes (Hungr et al., 2014).

Rock Intrusive, volcanic, metamorphic, strong sedimentary, (carbonatic or
arenaceous), and weak sedimentary (argillaceous; Hungr et al., 2014).

Strong Rock broken with hammer (Hungr et al., 2014).
Weak Rock peeled with knife (Hungr et al., 2014).

Soil Residual, colluvial, alluvial, lacustrine, marine, aeolian, glacial, vol-
canic, organic, random anthropogenic fills, engineered anthropogenic
fills, mine tailings, and sanitary waste (Hungr et al., 2014).

Peat Organic material (Hungr et al., 2014).
Debris Low-plasticity, unsorted, and mixed material (Hungr et al., 2014).
Silt, sand,
gravel, and
boulders

Nonplastic (or very low plasticity), granular, sorted. Silt particles cannot
be seen by eye (Hungr et al., 2014).

Partly
saturated

GW, GP, and GM unified soil classes (Hungr et al., 2014).

Saturated SW, SP, and SM unified soil classes (Hungr et al., 2014).
Dry ML unified soil class (Hungr et al., 2014).

Mud Plastic, unsorted, and close-to-liquid-limit material. CL, CH, and CM
unified soil classes (Hungr et al., 2014).

Clay Plastic, can be modelled into standard thread when moist, has dry
strength. GC, SC, CL, MH, CH, OL, and OH unified soil classes (Hungr
et al., 2014).

Sensitive Sensitive or quick clay is a special type of clay prone to sudden strength
loss upon disturbance. From a relatively stiff material in the undisturbed
condition, an imposed stress can turn such clay into a liquid gel (Geert-
sema, 2013).

Soft Easily molded with fingers. Point of geologic pick easily pushed into
shaft of handle. Easily penetrated several centimetres by thumb (Hungr
et al., 2014; USDA, 2012).

Stiff Indented by thumb with great effort. Point of geologic pick can be
pushed in up to 1 cm. Very difficult to mold with fingers. Just penetrated
with hand spade (Hungr et al., 2014; USDA, 2012).
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Appendix C: Landslide models

Table C1. Debris flow model (https://italy.minervageo.com/debris-flow-model/, last access: 26 October 2020) .

Instance property Value Frequency Model definition source Comments

Has surficial form Fan(s) Always (Goudie, 2014) Fans are where debris flows deposit.
Has surficial form Terrace(s) Usually (Goudie, 2014) Terraces are formed by downcutting

and lateral erosion of alluvial sediments
by streams. Debris flows can generate
terraces; hence, terraces can be indica-
tors of debris flow activity.

Has surficial form Hummock(s) Always (Howes and Kenk, 1997) Hummocky topography may be indica-
tor of landslide debris.

Has water River/stream Always (Howes and Kenk, 1997) Debris flows occur periodically on es-
tablished paths, usually gullies and
first- or second-order streams.

Has rainfall Extreme rainfall Always (Friele, 2012; Segoni et al.,
2018)

Debris flows are triggered by intense
rainfall (Segoni et al., 2018). Rainfall
thresholds for this study are derived
from Friele (2012).

Has rainfall Severe rainfall Usually (Friele, 2012; Segoni et al.,
2018)

Debris flows are triggered by intense
rainfall (Segoni et al., 2018). Rainfall
thresholds for this study are derived
from Friele (2012).

Has rainfall Moderate rainfall Sometimes (Friele, 2012; Segoni et al.,
2018)

Debris flows are triggered by intense
rainfall (Segoni et al., 2018). Rainfall
thresholds for this study are derived
from Friele (2012).

Has rainfall Mild rainfall Rarely (Friele, 2012; Segoni et al.,
2018)

Debris flows are triggered by intense
rainfall (Segoni et al., 2018). Rainfall
thresholds for this study are derived
from Friele (2012).

Has geomorph process Erosional process Always (Bovis and Jakob, 1999)) Streams with active erosional processes
are more likely to experience debris
flows than streams with less active ero-
sional processes.

Has geomorph process Mass movement Always (Guzzetti et al., 2012) Landslides are more likely to occur on
slopes or valleys that have experienced
landslides before.

Has been logged within years 5–10 years Always (Jackson Jr, 2019) Landslides are extremely likely by 5 to
10 years after tree harvesting. Most of
tree roots have died, and new trees are
too small to provide anchoring effect
with their roots on the slope.

Has been logged within years 10–20 years Usually (Jackson Jr, 2019) Landslides are likely by 10 to 20 years
after tree harvesting as new trees are
starting to provide anchoring effect with
their roots on the slope.

Has been logged within years 0–5 years Usually (Jackson Jr, 2019) Landslides are likely by 0 to 5 years af-
ter tree harvesting as the trees are dead,
but some roots are still providing an-
choring effect on the slope.

Has fire within years 0–2 years Always (Jackson Jr, 2019) Debris flows are very likely for 2 years
after a wildfire. Water cannot infiltrate;
runoff and erosion increase as the soil
becomes water-repellent and loses co-
hesion because of the fire heat.
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Table C1. Continued.

Instance property Value Frequency Model definition source Comments

Has fire within years 3–5 years Usually (Jackson Jr, 2019) Debris flows are likely between 3 and 5 years
after a wildfire. The water-repellent soil hori-
zon degrades, but the roots of dead trees are
starting to rot, and they do not support the
slope with their anchoring effect anymore.

Has fire within years 5–10 years Always (Jackson Jr, 2019) Debris flows are very likely between 5 and 10
years after a wildfire. Roots of dead trees de-
cay, and they are not supporting the soil any-
more as for the case of tree harvesting.

Has fire within years 10–20 years Usually (Jackson Jr, 2019) Debris flows are likely between 10 and 20
years after a wildfire. The roots have lost an-
choring effect, and the new trees are still too
small to support the slope.

Has transport line Road resource Always (Jackson Jr, 2019) Logging roads are the greatest aggravating
factor for landslide activity as compared to
undisturbed slopes.

Has transport line Road resource
demographic

Always (Jackson Jr, 2019) Logging roads are the greatest aggravating
factor for landslide activity as compared to
undisturbed slopes.

Has transport line Road unclassified
or unknown

Always (Jackson Jr, 2019) The “Road Unclassified Or Unknown” in this
area of BC represents mostly old inactive log-
ging roads. This assessment has been done
by visual evaluation of the data. Logging
roads are the greatest aggravating factor for
landslide activity as compared to undisturbed
slopes.

Has bed rock Volcanic igneous
rock

Always (Bovis and Jakob, 1999) Quaternary volcanic rocks in BC have usu-
ally weak geotechnical properties. Basins un-
derlain by these weak rocks are likely to
experience frequent and large debris flow
events.

Has fire within years > 20 years Sometimes (Jackson Jr, 2019) After 20 years since a wildfire, trees have re-
grown, and the wildfire effects on slope sta-
bility have diminished.

Has surficial material Colluvium Usually (Bovis and Jakob, 1999) Debris flows are common in areas with easily
erodible material.

Has surficial material Morainal material
(till)

Always (Bovis and Jakob, 1999) Debris flows are common in areas with easily
erodible material.

Has stream order 1 Always (Hungr et al., 2014) Debris flows occur periodically on estab-
lished paths, usually gullies and first- or
second-order streams.

Has stream order 2 Always (Hungr et al., 2014) Debris flows occur periodically on estab-
lished paths, usually gullies and first- or
second-order streams.

Has stream order 3 Rarely (Hungr et al., 2014) Debris flows occur periodically on estab-
lished paths, usually gullies and first- or
second-order streams.

Has stream order 4 Rarely (Hungr et al., 2014) Debris flows occur periodically on estab-
lished paths, usually gullies and first- or
second-order streams.

Has stream order 5 Rarely (Hungr et al., 2014) Debris flows occur periodically on estab-
lished paths, usually gullies and first- or
second-order streams.

Has been logged within
years

> 20 years Sometimes (Jackson Jr, 2019) By 20 years since logging, trees have re-
grown, and the roots are anchoring the soil
again.
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Table C1. Continued.

Instance property Value Frequency Model definition source Comments

Has geomorph process Debris flow Always (Bovis and Jakob, 1999;
Wilford et al., 2004)

Melton ratio (number that takes into account
relief and area of a watershed) and watershed
length allow discrimination of debris flow, debris
flood, and flood-prone fans.

Has landslide type Debris flow Always (Hungr et al., 2014) Debris flows occur periodically on established
path. Determining the frequency of event is a
non-trivial task, but the fact that someone mapped
a debris flow in a specific channel indicates the
channel as prone to debris flow events.

Has landslide type Fall Usually (Bovis and Jakob, 1999) Any landslide types may accumulate debris in a
channel that can then be mobilized into a debris
flow.

Has landslide type Flow Usually (Bovis and Jakob, 1999) Any landslide types may accumulate debris in a
channel that can then be mobilized into a debris
flow.

Has landslide type Slide Usually (Bovis and Jakob, 1999) Any landslide types may accumulate debris in a
channel that can then be mobilized into a debris
flow.

Has landslide type Spread Usually (Bovis and Jakob, 1999) Any landslide types may accumulate debris in a
channel that can then be mobilized into a debris
flow.

Has landslide type Topple Usually (Bovis and Jakob, 1999) Any landslide types may accumulate debris in a
channel that can then be mobilized into a debris
flow.

Has landslide type Slope defor-
mation

Usually (Bovis and Jakob, 1999) Any landslide types may accumulate debris in a
channel that can then be mobilized into a debris
flow.

Has slope Very steep Always (Hungr et al., 2014) Debris flows occur periodically on established
paths, usually gullies and first- or second-order
streams.

Has slope Steep Always (Hungr et al., 2014) Debris flows occur periodically on established
paths, usually gullies and first- or second-order
streams.

Has slope Moderately
steep

Usually (Hungr et al., 2014) Debris flows occur periodically on established
paths, usually gullies and first- or second-order
streams.

Has slope Moderate Usually (Hungr et al., 2014) Debris flows occur periodically on established
paths, usually gullies and first- or second-order
streams.

Has slope Gentle Rarely (Hungr et al., 2014) Debris flows occur periodically on established
paths, usually gullies and first- or second-order
streams.

Has slope Plain Never (Hungr et al., 2014) Debris flows occur periodically on established
paths, usually gullies and first- or second-order
streams.

Has surficial form Cliff Always (Howes and Kenk, 1997) Cliffs indicate steep terrains where sediments
may be mobilized as debris flows.

Has surficial form Cones Always (Howes and Kenk, 1997) Cones store sediments that may be remobilized
into debris flow.

Has water Permafrost Always (Hungr et al., 2014) Permafrost degradation can destabilize sedi-
ments.

Has texture Blocks Always (Howes and Kenk, 1997) The presence of blocks can be an indicator of
landslide processes.

Has texture Rubble Always (Howes and Kenk, 1997) The presence of rubble is an indicator of landslide
processes.
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Table C2. Slides in rock model https://italy.minervageo.com/the-roberti-slides-in-rock-model/ (last access: 26 October 2020).

Instance property Value Frequency Model definition source Comments

Has geomorph process General
periglacial
processes

Always (Evans and Clague, 1994) Landslides are common in periglacial envi-
ronment, especially under changing climatic
conditions.

Has geomorph process Erosional pro-
cess

Always (Guzzetti et al., 2012) Active erosional processes are possible indi-
cators of landslide activity as landslides occur
where landslides have occurred before.

Has geomorph process Mass movement Always (Guzzetti et al., 2012) Active mass movement processes are possi-
ble indicators of landslide activity as land-
slides occur where landslides have occurred
before.

Has slope Very steep Always (Hungr et al., 2014) Very steep slopes are prone to slides.
Has slope Steep Always (Hungr et al., 2014) Steep slopes are prone to slides.
Has slope Moderately steep Usually (Hungr et al., 2014) Moderately steep slopes are prone to slides.
Has slope Moderate Sometimes (Hungr et al., 2014) Moderate slopes may be prone to slides.
Has slope Gentle Never (Hungr et al., 2014) Gentle slopes are rarely prone to slides.
Has slope Plain Never (Hungr et al., 2014) Plain slopes are rarely prone to slides.
Has surficial material Bedrock Usually (Hungr et al., 2014) “Bedrock” mapped as surficial material indi-

cates the presence of cliffs and bluffs, possi-
bly prone to rock slides.

Has surficial material Weathered
bedrock

Always (Hungr et al., 2014) Weather bedrock is more likely to fail than
fresh bedrock.

Has weather threshold Extreme weather Always (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has weather threshold Severe weather Usually (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has weather threshold Mild weather Rarely (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has weather threshold Moderate
weather

Sometimes (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has land use Alpine Always (Evans and Clague, 1994) Landslides are common in the Alpine zone,
especially under changing climatic condi-
tions.

Has land use Sub-alpine
avalanche chutes

Always (Hungr et al., 2014) Rock slides can occur in gullies that are also
avalanche tracks.

Has stream order 1 Always (Strahler, 1957) Stream erosion can affect slope stability.
Has stream order 2 Always (Strahler, 1957) Stream erosion can affect slope stability.
Has stream order 3 Always (Strahler, 1957) Stream erosion can affect slope stability.
Has stream order 4 Usually (Strahler, 1957) Stream erosion can affect slope stability.
Has stream order 5 Sometimes (Strahler, 1957) Stream erosion can affect slope stability.
Has transport line Road resource Usually (Jackson Jr, 2019) Logging roads are the greatest aggravating

factor for landslide activity as compared to
undisturbed slopes.

Has transport line Road unclassi-
fied or unknown

Usually (Jackson Jr, 2019) Roads are an aggravating factor for landslide
activity as compared to undisturbed slopes.

Has transport line Trail Usually (Jackson Jr, 2019) Roads are an aggravating factor for landslide
activity as compared to undisturbed slopes.
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Table C2. Continued.

Instance property Value Frequency Model definition source Comments

Has transport line Road recreation
demographic

Sometimes (Jackson Jr, 2019) Roads are an aggravating factor for landslide
activity as compared to undisturbed slopes.

Has water Permafrost Always (Jackson Jr, 2019) Landslides are common in periglacial envi-
ronment, especially under changing climatic
conditions.

Has bed rock Metamorphic
rock

Always (Hungr et al., 2014) Foliated metamorphic rocks are usually weak
and prone to failure.

Has CORINE Land
Cover

Glacier and per-
petual snow

always (Evans and Clague, 1994) Landslides are common in the Alpine zone,
especially under changing climatic condi-
tions.

Has CORINE land
cover

Bare rocks Always (Hungr et al., 2014) Rock outcrops can be steep and prone to land-
slides.

Has CORINE land
cover

Road and rail
networks and
associated lands

Always (Jackson Jr, 2019) Roads and rail increase landslide activity as
they are a break in slope where water can ac-
cumulate.

Has fault Any fault Always (Reichenbach et al., 2018) Faults are indicator of weak rocks, and the
presence of faults is one of the main pa-
rameters considered in landslide susceptibil-
ity mapping.

Has landslide type Rock fall Usually (Guzzetti et al., 2012) Landslides are more likely to occur on slopes
or valleys that have experienced landslides
before.

Has landslide type Rock slope
spread

Usually (Guzzetti et al., 2012) Landslides are more likely to occur on slopes
or valleys that have experienced landslides
before.

Has landslide type Rock topples Usually (Guzzetti et al., 2012) Landslides are more likely to occur on slopes
or valleys that have experienced landslides
before.

Has landslide type Slides in rock Always (Guzzetti et al., 2012) Landslides are more likely to occur on slopes
or valleys that have experienced landslides
before.

Has landslide type Slides in soil Sometimes (Guzzetti et al., 2012) Note that location must also be considered.
In essence, where there is soil, it is less likely
that there will be steep slopes, but soil slides
are a sign of an unstable slope and there-
fore are not explicitly negatively correlated to
rock slides.

Has landslide type Slope deforma-
tion in rock

Usually (Guzzetti et al., 2012) Landslides are more likely to occur on slopes
or valleys that have experienced landslides
before.

Has landslide type Flows in soil Sometimes (Guzzetti et al., 2012) Where there is soil, it is less likely that there
will be steep slopes and rock slides. But soil
slides are a sign of an unstable slope and
therefore are not explicitly negatively corre-
lated to rock slides.

Has landslide type Soil fall Sometimes (Guzzetti et al., 2012) Where there is soil, it is less likely that there
will be steep slopes and rock slides. But soil
slides are a sign of an unstable slope and
therefore are not explicitly negatively corre-
lated to rock slides.

Has landslide type Slope deforma-
tion in soil

Sometimes (Guzzetti et al., 2012) Where there is soil, it is less likely that there
will be steep slopes, and rock slides. But soil
slides are a sign of an unstable slope, and
therefore are not explicitly negatively corre-
lated to rock slides.
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Table C2. Continued.

Instance property Value Frequency Model definition source Comments

Has landslide type Soil topple Sometimes (Guzzetti et al., 2012) Where there is soil, it is less likely that there
will be steep slopes and rock slides. But soil
slides are a sign of an unstable slope and
therefore are not explicitly negatively corre-
lated to rock slides.

Has surficial form Cliff Always (Hungr et al., 2014) Cliffs can generate rock slides.
Has texture Rubble Always (Howes and Kenk, 1997) The presence of blocks can be an indicator of

landslide processes.
Has texture Blocks Always (Howes and Kenk, 1997) The presence of rubble is an indicator of land-

slide processes.
Has surficial form Cones Always (Howes and Kenk, 1997) Cones may be formed by rock slide debris;

hence they can be considered an indicator of
rockslide activity.
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Table C3. Slides in soil model https://italy.minervageo.com/slides-in-soil/ (last access: 26 October 2020).

Instance property Value Frequency Model definition source Comments

Has surficial material Morainal material
(Till)

Always (Jackson Jr et al., 2008) Soil slides can be generated when
morainal material falls from a slope.

Has surficial material Bedrock Sometimes (Jackson Jr et al., 2008) There may be some soil even when
“bedrock” has been mapped as principal
surficial material.

Has surficial material Colluvium Always (Jackson Jr et al., 2008) Soil slides can be generated when collu-
vium has been mapped as principal surfi-
cial material.

Has geomorph process Erosional process Always (Guzzetti et al., 2012) Active erosional processes are possible in-
dicators of landslide activity as landslides
occur where landslides have occurred be-
fore.

Has geomorph process Mass movement Always (Guzzetti et al., 2012) Active mass movement processes are pos-
sible indicators of landslide activity as
landslides occur where landslides have oc-
curred before.

Has slope Plain Rarely (Hungr et al., 2014) Soil slides rarely occur on plain slopes.
Has slope Gentle Rarely (Hungr et al., 2014) Soil slides rarely occur on plain slopes.
Has slope Moderate Usually (Hungr et al., 2014) Soil slides usually occur on moderate

slopes.
Has slope Moderately steep Usually (Hungr et al., 2014) Soil slides usually occur on moderately

steep slopes.
Has slope Steep Rarely (Hungr et al., 2014) Soil slides rarely occur on moderately

steep slopes because usually there is not
much soil on steep slopes.

Has slope Very steep Never (Hungr et al., 2014) Soil slides rarely occur on steep slopes be-
cause usually there is not much soil on
steep slopes.

Has land use Alpine Never (Hungr et al., 2014) Soil slides rarely occur in the Alpine zone
because usually there is not much soil
there.

Has land use Sub-alpine
avalanche chutes

Usually (Hungr et al., 2014) Soil slides can occur in the gullies that are
also avalanche tracks.

Has stream order 1 Always (Strahler, 1957) Stream erosion can cause soil slides.
Has stream order 2 Always (Strahler, 1957) Stream erosion can cause soil slides.
Has stream order 3 Usually (Strahler, 1957) Stream erosion can cause soil slides.
Has stream order 4 Usually (Strahler, 1957) Stream erosion can cause soil slides.
Has stream order 5 Sometimes (Strahler, 1957) Large stream erosion may cause soil

slides.
Has transport line Trail skid Always (Jackson Jr, 2019) Trail skid is an aggravating factor for land-

slide activity as compared to undisturbed
slopes.

Has transport line Trail Sometimes (Jackson Jr, 2019) Trails are an aggravating factor for land-
slide activity as compared to undisturbed
slopes.

Has transport line Road resource Always (Jackson Jr, 2019) Logging roads are the greatest aggravating
factor for landslide activity as compared
to undisturbed slopes.

Has transport line Road unclassified
or unknown

Always (Jackson Jr, 2019) Roads are an aggravating factor for land-
slide activity as compared to undisturbed
slopes.

Has transport line Highway Rarely (Jackson Jr, 2019) Roads are an aggravating factor for land-
slide activity as compared to undisturbed
slopes.
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Table C3. Continued.

Instance property Value Frequency Model definition source Comments

Has transport line Road recre-
ation demo-
graphic

Sometimes (Jackson Jr, 2019) Roads are an aggravating factor for landslide
activity as compared to undisturbed slopes.

Has thickness Blanket Always (Jackson Jr et al., 2008) Soil slides can occur when there is enough
soil that can be mobilized on a slope.

Has thickness Mantle of vari-
able thickness

Usually (Jackson Jr et al., 2008) Soil slides can occur when there is enough
soil that can be mobilized on a slope.

Has thickness Veneer Sometimes (Jackson Jr et al., 2008) Soil slides can occur when there is enough
soil that can be mobilized on a slope.

Has thickness Thin veneer Rarely (Jackson Jr et al., 2008) Soil slides can occur when there is enough
soil that can be mobilized on a slope.

Has rainfall Extreme rain-
fall

Always (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has rainfall Severe rainfall Usually (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has rainfall Moderate rain-
fall

Sometimes (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has rainfall Mild rainfall Rarely (Friele, 2012; Segoni et al.,
2018)

Landslides can be triggered by intense rain-
fall (Segoni et al., 2018) or snowmelt. Rain-
fall thresholds for this study are derived from
Friele (2012).

Has bed rock Metamorphic
rock

Always (Bovis and Jakob, 1999) Metamorphic foliated rocks have usually
weak geotechnical properties. Basins under-
lain by these weak rocks are likely to experi-
ence more landslides compared to basins un-
derlain by stronger lithologies.

Has texture Blocks Always (Howes and Kenk, 1997) The presence of block can be an indicator of
mass movement processes.

Has texture Rubble Always (Howes and Kenk, 1997) The presence of rubble is an indicator of mass
movement processes.

Has been logged
within years

> 20 years Sometimes (Jackson Jr, 2019) By 20 years since logging, trees have re-
grown, and the roots are anchoring the soil
again.

Has been logged
within years

10–20 years Usually (Jackson Jr, 2019) Landslides are likely by 10 to 20 years af-
ter tree harvesting as new trees are starting to
provide anchoring effect with their roots on
the slope.

Has been logged
within years

5–10 years Always (Jackson Jr, 2019) Landslides are extremely likely by 5 to 10
years after tree harvesting. Most of tree roots
have died, and new trees are too small to pro-
vide anchoring effect with their roots on the
slope.

Has been logged
within years

0–5 years Usually (Jackson Jr, 2019) Landslides are likely by 0 to 5 years after
tree harvesting as the trees are dead, but some
roots are still providing anchoring effect on
the slope.

Has fire within
years

> 20 years Sometimes (Jackson Jr, 2019) After 20 years since a wildfire, trees have re-
grown, and the wildfire effects on slope sta-
bility have diminished.
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Table C3. Continued.

Instance property Value Frequency Model definition source Comments

Has fire within
years

10–20 years Sometimes (Jackson Jr, 2019) Landslides are likely between 10 and 20 years
after a wildfire. The roots have lost anchoring
effect, and the new trees are still too small to
support the slope.

Has fire within
years

0–2 years Always (Jackson Jr, 2019) Landslides are very likely for 2 years after
a wildfire. Water cannot infiltrate; runoff and
erosion increase as the soil becomes water-
repellent and loses cohesion because of the fire
heat.

Has fire within
years

3–5 years Usually (Jackson Jr, 2019) Landslides are likely between 3 and 5 years af-
ter a wildfire. The water-repellent soil horizon
degrades, but the roots of dead trees are start-
ing to rot, and they do not support the slope
with their anchoring effect anymore.

Has fault Any fault Always (Reichenbach et al.,
2018)

The presence of fault is an important factor to
determine landslide susceptibility.

Has fire within
years

5–10 years Always (Jackson Jr, 2019) Landslides are very likely between 5 and 10
years after a wildfire. Roots of dead trees de-
cay, and they are not supporting the soil any-
more as for the case of tree harvesting.

Has landslide type Slides in soil Always (Guzzetti et al., 2012) Landslides are more likely to occur on slopes
or valleys that have experienced landslides be-
fore.

Has landslide type Fall in rock Sometimes (Guzzetti et al., 2012) Where there is rock, it is less likely that there
will be soil slides rather than landslides in rock.
But landslides in rock are a sign of an unsta-
ble slope and therefore are not explicitly nega-
tively correlated to soil slides.

Has landslide type Rock topples Sometimes (Guzzetti et al., 2012) Where there is rock, it is less likely that there
will be soil slides rather than landslides in rock.
But landslides in rock are a sign of an unsta-
ble slope and therefore are not explicitly nega-
tively correlated to soil slides.

Has landslide type Flows in rock Sometimes (Guzzetti et al., 2012) Where there is rock, it is less likely that there
will be soil slides rather than landslides in rock.
But landslides in rock are a sign of an unsta-
ble slope and therefore are not explicitly nega-
tively correlated to soil slides.

Has landslide type Slides in rock Sometimes (Guzzetti et al., 2012) Where there is rock, it is less likely that there
will be soil slides rather than landslides in rock.
But landslides in rock are a sign of an unsta-
ble slope and therefore are not explicitly nega-
tively correlated to soil slides.

Has landslide type Slope deforma-
tion in rock

Sometimes (Guzzetti et al., 2012) Where there is rock, it is less likely that there
will be soil slides rather than landslides in rock.
But landslides in rock are a sign of an unsta-
ble slope and therefore are not explicitly nega-
tively correlated to soil slides.

Has landslide type Spread in rock Sometimes (Guzzetti et al., 2012) Where there is rock, it is less likely that there
will be soil slides rather than landslides in rock.
But landslides in rock are a sign of an unsta-
ble slope and therefore are not explicitly nega-
tively correlated to soil slides.
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Data availability. – The web application is available at https:
//map.italy.minervageohazards.com/ (Minerva Intelligence,
2019g).

– The schema extension is available at https://github.com/
minervaintelligence/INSPIRE-NZ-Susceptibility (Minerva In-
telligence, 2019e).

– The code list extension is available at http://minerva.codes/
registry (Minerva Intelligence, 2019a, b, c).

– Data from the Italian National geoportal are available under
“Attribution-NonCommercial-ShareAlike 3.0 Italy (CC BY-
NC-SA 3.0 IT)” license (Ministero dell’Ambiente e della
Tutela del Territorio e del Mare, 2017).

– Data from the Veneto Geoportal are available under the “Italian
Open Data License 2.0” (Regione del Veneto, 2020).

– CORINE Land Cover data are available under EEA stan-
dard reuse policy: reuse of content on the EEA website for
commercial or non-commercial purposes is permitted free of
charge, provided that the source is acknowledged (Feranec et
al., 2016).

– The Tinitaly digital elevation model (DEM) is available upon
request by sending an email to simone.tarquini@ingv.it with
the subject of TINITALY DEM. Terms and conditions of use:
data are provided for research purposes only. Data are provided
solely to the person named on this application form and should
not be given to third parties. Third parties who might need ac-
cess to the same dataset are required to fill out their own appli-
cation forms. Data from INGV are available under “Creative
Commons Attribution-ShareAlike 4.0 International (CC BY-
SA 4.0)” (Tarquini et al., 2007).

– The permafrost data are available under “Attribution 3.0 Un-
ported (CC BY 3.0)” licence (Gruber, 2012).
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