Articles | Volume 19, issue 3
https://doi.org/10.5194/nhess-19-629-2019
https://doi.org/10.5194/nhess-19-629-2019
Research article
 | 
25 Mar 2019
Research article |  | 25 Mar 2019

Application of the Levenburg–Marquardt back propagation neural network approach for landslide risk assessments

Junnan Xiong, Ming Sun, Hao Zhang, Weiming Cheng, Yinghui Yang, Mingyuan Sun, Yifan Cao, and Jiyan Wang

Related authors

Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015)
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021,https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Assessment of Flood Susceptibility Using Support Vector Machine in the Belt and Road Region
Jun Liu, Junnan Xiong, Weiming Cheng, Yi Li, Yifan Cao, Yufeng He, Yu Duan, Wen He, and Gang Yang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-80,https://doi.org/10.5194/nhess-2021-80, 2021
Manuscript not accepted for further review
Short summary
Automatic crater detection by mining existing crater map
Cheng-Zhi Qin, Yan-Wen Wang, Wei-Ming Cheng, and A-Xing Zhu
Abstr. Int. Cartogr. Assoc., 1, 304, https://doi.org/10.5194/ica-abs-1-304-2019,https://doi.org/10.5194/ica-abs-1-304-2019, 2019
Spatiotemporal analysis of flash flooding events in mountainous area of China during 1950–2015
Nan Wang, Weiming Cheng, Min Zhao, Qiangyi Liu, Jing Wang, and Dongcheng Liu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-150,https://doi.org/10.5194/nhess-2019-150, 2019
Manuscript not accepted for further review
Short summary
RELATIVE ERROR EVALUATION TO TYPICAL OPEN GLOBAL DEM DATASETS IN SHANXI PLATEAU OF CHINA
S. Zhao, S. Zhang, and W. Cheng
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3, 2395–2399, https://doi.org/10.5194/isprs-archives-XLII-3-2395-2018,https://doi.org/10.5194/isprs-archives-XLII-3-2395-2018, 2018

Related subject area

Landslides and Debris Flows Hazards
Rainfall thresholds estimation for shallow landslides in Peru from gridded daily data
Carlos Millán-Arancibia and Waldo Lavado-Casimiro
Nat. Hazards Earth Syst. Sci., 23, 1191–1206, https://doi.org/10.5194/nhess-23-1191-2023,https://doi.org/10.5194/nhess-23-1191-2023, 2023
Short summary
Instantaneous limit equilibrium back analyses of major rockslides triggered during the 2016–2017 central Italy seismic sequence
Luca Verrucci, Giovanni Forte, Melania De Falco, Paolo Tommasi, Giuseppe Lanzo, Kevin W. Franke, and Antonio Santo
Nat. Hazards Earth Syst. Sci., 23, 1177–1190, https://doi.org/10.5194/nhess-23-1177-2023,https://doi.org/10.5194/nhess-23-1177-2023, 2023
Short summary
Deadly disasters in southeastern South America: flash floods and landslides of February 2022 in Petrópolis, Rio de Janeiro
Enner Alcântara, José A. Marengo, José Mantovani, Luciana R. Londe, Rachel Lau Yu San, Edward Park, Yunung Nina Lin, Jingyu Wang, Tatiana Mendes, Ana Paula Cunha, Luana Pampuch, Marcelo Seluchi, Silvio Simões, Luz Adriana Cuartas, Demerval Goncalves, Klécia Massi, Regina Alvalá, Osvaldo Moraes, Carlos Souza Filho, Rodolfo Mendes, and Carlos Nobre
Nat. Hazards Earth Syst. Sci., 23, 1157–1175, https://doi.org/10.5194/nhess-23-1157-2023,https://doi.org/10.5194/nhess-23-1157-2023, 2023
Short summary
Multi-event assessment of typhoon-triggered landslide susceptibility in the Philippines
Joshua N. Jones, Georgina L. Bennett, Claudia Abancó, Mark A. M. Matera, and Fibor J. Tan
Nat. Hazards Earth Syst. Sci., 23, 1095–1115, https://doi.org/10.5194/nhess-23-1095-2023,https://doi.org/10.5194/nhess-23-1095-2023, 2023
Short summary
Antecedent rainfall as a critical factor for the triggering of debris flows in arid regions
Shalev Siman-Tov and Francesco Marra
Nat. Hazards Earth Syst. Sci., 23, 1079–1093, https://doi.org/10.5194/nhess-23-1079-2023,https://doi.org/10.5194/nhess-23-1079-2023, 2023
Short summary

Cited articles

Akgun, A., Kıncal, C., and Pradhan, B.: Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey), Environ. Monit. Assess., 184, 5453–5470, https://doi.org/10.1007/s10661-011-2352-8, 2012. 
Atta-Ur-Rahman and Shaw, R.: Hazard, Vulnerability and Risk: The Pakistan Context, Springer, Japan, 2015. 
Avalon Cullen, C., Al-Suhili, R., and Khanbilvardi, R.: Guidance Index for Shallow Landslide Hazard Analysis, Remote. Sens., 8, 866, https://doi.org/10.3390/rs8100866, 2016. 
Chang, H. and Kim, N. K.: The evaluation and the sensitivity analysis of GIS-based landslide susceptibility models, Geosci. J., 8, 415–423, https://doi.org/10.1007/BF02910477, 2004. 
Ding, M. and Tian, S.: Landslide and Debris Flow Risk Assessment and Its Application, Science Press, Beijing, 2013. 
Download
Short summary
We want to know which areas are prone to landslides and where pipelines are more unsafe. Through a model, we determined that 33.18 % and 40.46 % of the slopes in the study are were in high-hazard and extremely high-hazard areas, respectively. The number and length of pipe segments in the highly vulnerable and extremely vulnerable areas accounted for about 12 % of the total. In general, the pipeline risk within Qingchuan and Jian'ge counties was relatively high.
Altmetrics
Final-revised paper
Preprint