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Abstract. Landslide disasters are one of the main risks
involved with the operation of long-distance oil and gas
pipelines. Because previously established disaster risk mod-
els are too subjective, this paper presents a quantitative
model for regional risk assessment through an analysis of
the patterns of historical landslide disasters along oil and
gas pipelines. Using the Guangyuan section of the Lanzhou–
Chengdu–Chongqing (LCC) long-distance multiproduct oil
pipeline (82 km) in China as a case study, we successively
carried out two independent assessments: a susceptibility as-
sessment and a vulnerability assessment. We used an entropy
weight method to establish a system for the vulnerability as-
sessment, whereas a Levenberg–Marquardt back propagation
(LM-BP) neural network model was used to conduct the sus-
ceptibility assessment. The risk assessment was carried out
on the basis of two assessments. The first, the system of
the vulnerability assessment, considered the pipeline position
and the angle between the pipe and the landslide (pipeline
laying environmental factors). We also used an interpolation
theory to generate the standard sample matrix of the LM-BP
neural network. Accordingly, a landslide susceptibility risk
zoning map was obtained based on susceptibility and vulner-
ability assessment. The results show that about 70 % of the
slopes were in high-susceptibility areas with a comparatively
high landslide possibility and that the southern section of the
oil pipeline in the study area was in danger. These results
can be used as a guide for preventing and reducing regional
hazards, establishing safe routes for both existing and new

pipelines, and safely operating pipelines in the Guangyuan
area and other segments of the LCC oil pipeline.

1 Introduction

By the year 2020, the total length of long-distance oil and gas
pipelines is expected to exceed 160 000 km in China. This
represents a major upsurge in the length of multinational
long-distance oil and gas pipelines (Huo et al., 2016). The
rapid development of pipelines is associated with significant
geological hazards, especially landslides, which increasingly
threaten the safe operation of pipelines (Wang et al., 2012;
Yun and Kang, 2014; Zheng et al., 2012). Landslide disasters
cause great harm to infrastructure and human life. Moreover,
the wide impact area of landslides restricts the economic de-
velopment of landslide-prone areas (Ding et al., 2016; Hong
et al., 2015). A devastating landslide can lead to casualties,
property loss, environmental damage, and long-term service
disruptions caused by massive oil and gas leakages (G. Li
et al., 2016; Zheng et al., 2012). Generally, pipeline failure
or destruction caused by landslides is much more deleterious
than the landslides themselves, which makes it important to
research the risk assessment of geological landslide hazards
in pipeline areas (Inaudi and Glisic, 2006; Mansour et al.,
2011).

Natural disaster risk is comprised of a combination of
natural and social attributes (Atta-Ur-Rahman and Shaw,
2015). The United Nations Department of Humanitarian Af-
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fairs defines natural disaster risk as a product of susceptibil-
ity and vulnerability (Rafiq and Blaschke, 2012; Sari et al.,
2017). In recent years, progress in geographic information
systems (GIS) and remote sensing (RS) technologies have
greatly enhanced our ability to evaluate the potential risks
that landslides pose to pipelines (Akgun et al., 2012; Li and
Gao, 2015; Sari et al., 2017). The disaster risk assessment
model has been widely recognized and applied by experts
and scholars all over the world. Landslide risk assessment
can take the form of a qualitative (Wu et al., 1996), quanti-
tative (Ho et al., 2000) or semiquantitative assessment (Liu
et al., 2015) according to actual demand. Quantitative meth-
ods and models that have been proposed for the assessment
can be divided into methods of statistical analysis (Sari et al.,
2017), mathematical models (Akgun et al., 2012) and ma-
chine learning (He and Fu, 2009). However, most of these
methods are subjective, such as expert evaluations, analyti-
cal hierarchy processes, logistic regressions and fuzzy inte-
gration methods, which could affect the accuracy and rea-
sonableness of the evaluation (Fall et al., 2006; Sarkar and
Gupta, 2005). This shortcoming can be overcome through
the artificial neural network, especially the mature back prop-
agation (BP) neural network that is widely used in function
approximation and pattern recognition (Ke and Li, 2014a;
Li et al., 2013; Su and Deng, 2003). The evaluation indica-
tor system generally includes disaster characteristics, disaster
prevention and pipeline attributes (Li, 2008, 2010). The fault
tree analysis, fuzzy comprehensive evaluation and the grey
theory are used to evaluate the failure probability of the sys-
tem through indicator weight and scoring (Shi, 2011; Ye et
al., 2013). In previous studies, pipeline vulnerability evalua-
tion indicators only considered the pipeline itself, and the re-
lationship between the pipeline and environment was rarely
examined (Feng et al., 2014; Li, 2008; Liu et al., 2015). In
this paper, the interaction between landslide hazards and the
pipeline itself was considered, which improved the quantita-
tive degree of the evaluation.

Based on the theory of the Levenberg–Marquardt back
propagation (LM-BP) neural network, a standard sample ma-
trix was developed using interpolation theory, after an anal-
ysis of the distribution characteristics of landslides that oc-
curred in the study area was performed and a regional land-
slide susceptibility assessment was completed. Considering
the interaction between landslide disasters and the pipeline
itself, a pipeline vulnerability evaluation in the landslide area
was realized using the entropy weight method. This paper
establishes a risk assessment model and methods for assess-
ing landslide geological susceptibility of oil pipelines by
comprehensively utilizing GIS and RS technology, which to-
gether improves the quantitative degree of the assessment.

2 Study area

The study area was Guangyuan City in Sichuan province,
which was further narrowed to the area from 105◦15′ to
106◦04′ E and 32◦03′ to 32◦45′ N, straddling 19 townships
in five counties from south to north (Fig. 1). The Lanzhou–
Chengdu–Chongqing (LCC) multiproduct oil pipeline is
China’s first long-distance pipeline. It begins in Lanzhou
City and runs through Shanxi and Sichuan provinces (Hao
and Liu, 2008). Our study area covered sloped areas of
this range, with 5 km on both sides of the Guangyuan sec-
tion (82 km) of the oil pipeline. The pipeline within the
K558–K642 pipes may be affected by the slope areas. The
Guangyuan section, located in northern Sichuan, is a tran-
sitional zone from the basin area to the mountain area. It
features terrain of moderate and low mountains, crisscrossed
networks of ravines and a strong fluvial incision. Altitudes
in this area range from 328 to 1505 m. The study area has
a subtropical monsoon climate with four distinctive seasons
and annual precipitation measuring about 900 to 1000 mm.
Moreover, two large unstable faults (the central fault of the
Longmen Mountains and Longmen Mountains’ Piedmont
fault zone) make the area geologically unstable and prone
to frequent geological hazards (Li et al., 2012). Guangyuan,
through which the pipeline passes, has a high incidence of
landslides, which have happened 300 times in the Lizhou and
Chaotian districts (Zhang et al., 2011). In this area, landslide
geological hazards seriously threaten the safe operation of
the LCC oil pipeline.

3 Data sources

Landslide susceptibility assessment, pipeline vulnerability
assessment and geological hazard risk assessment of the
landslide pipeline were made successively. Digital elevation
model (DEM) data with 30 m accuracy were sourced from
the Geospatial Data Cloud (http://www.gscloud.cn/, last ac-
cess: January 2017. Precipitation data were downloaded from
the dataset of annual surface observation values in China be-
tween the years 1981 and 2010, as published by the China
Meteorological Administration (http://data.cma.cn/, last ac-
cess: January 2017). These data were collected from 18 me-
teorological observatories near and within the study area and
interpolated using the kriging method (at a resolution of
30 m×30 m). Geological maps and landslide data (histori-
cal landslides) in the study area were obtained from Sichuan
province’s geological environmental monitoring station. RS
images (GF-1, multispectral 8 m, resolution 2 m) were pro-
vided by the Sichuan Remote Sensing Center.

The location of the middle line of the pipeline was detected
through the direct connection method (i.e., the transmitter’s
output line was directly connected to the metal pipeline) us-
ing an RD8000 underground pipeline detector. Pipeline mid-
line coordinates were measured using total network real-time
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Figure 1. Landslide location map of the study area.

kinematic technology, and, simultaneously, the coordinates
of the pipe ancillary facilities (including detective poles,
mileage pegs and milestones) were acquired. Mileage data
obtained through inner pipeline detection were derived from
the China Petroleum Pipeline Company.

4 Methods

4.1 Assessment unit

Division precision and the scale of the slope unit (i.e., the
basic element for a regional landslide susceptibility assess-
ment) were in keeping with the results of the evaluation (Qiu
et al., 2015). A total of 315 slope units were divided using
hydrologic analysis in ArcGIS (v. 10.4) (Fig. 2a). The irra-
tional unit (a slope unit with an inaccurate boundary) was
artificially identified and modified by comparing GF-1 satel-
lite remote sensing images. Boundary correction, fragment
combination and fissure filling were used for modification.

This vulnerability study focuses on assessing the vulner-
ability of transport pipelines to landslides. Considering both
previous research and the particulars of the research object,
we used a comprehensive segmentation method based on GIS
to divide the pipelines in our study. A total of 180 pipes were
divided in the study area, of which the longest was about
1.7 km, and the shortest was only about 10 m (Fig. 2b).

4.2 Assessment indicators

Based on selection principles of the indicator system and
the formation mechanism of landslide geological hazards,
as few indicators as possible were selected to reflect the
degree of danger posed by the landslide as accurately as
possible (Avalon Cullen et al., 2016; Jaiswal et al., 2010;
Ray et al., 2007). The internal factors in these indicators in-
cluded topography, geological structure, stratigraphic lithol-
ogy and surface coverage. Similarly, the external factors in-
cluded mean annual precipitation (MAP) and the coefficient
of the variation of annual rainfall (CVAR). The correlations
between indicators were analyzed using R (v. 3.3.1), and
the results show a significant correlation between MAP and
CVAR (R = 0.99) and between the normalized difference
water index (NDWI) and normalized differential vegetation
index (NDVI) (R = 0.87). Based on correlation and standard
deviation, CVAR and NDWI were eliminated from the orig-
inal evaluation system for the landslide susceptibility assess-
ment in the pipeline area (Table 1).

Generally, the evaluation indicator of pipeline vulnerabil-
ity as it relates to the relationship between a pipeline and its
surrounding environment is rarely considered. The evalua-
tion indicators in this paper were refined to include pipeline
parameters and the spatial relationship between a pipeline
and a landslide. The pipelines in the study area were based
in mountainous areas and have been running for many years.
All of these pipelines consisted of high-pressure pipes that
were made of steel tubes and had a diameter of 610 mm
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Figure 2. All slope units (a) and pipeline sections (b) in the study area.

Table 1. Indicators of landslide susceptibility assessment and pipeline vulnerability assessment.

Factor Indicators

Landslide Elevation
hazard Slope
indicator Landform Aspect

Height difference
Topographic profile curvature (TPC)

Land cover Normalized differential vegetation index (NDVI)
Normalized difference water index (NDWI)

Geology Lithology
Distance from the fault

Precipitation Mean annual precipitation (MAP)
Coefficient of variation of annual rainfall (CVAR)

Pipeline Defect density
vulnerability Depth
indicator Thickness

Pipe body Pressure
Materials
Diameter
Media

Spatial relationship between Position
pipeline and landslide Angle

for conveying oil. In keeping with the theory of the entropy
weight method, these indicators (e.g., pressure, materials, di-
ameter and media) were not included in the final evaluation
system used to determine pipeline vulnerability.

4.3 LM-BP neural network model

A neural network is a nonlinear mathematical structure
which is capable of representing complex nonlinear pro-
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cesses that relate the inputs and outputs of any system (Hsu
et al., 1995). With its good performance in nonlinear sta-
tistical modeling, it is very useful in exploring the hidden
relationships between the inputs and the outputs (Wu and
Wang, 2016). A BP neural network with many adjustable
parameters has a powerful parallel processing mechanism,
high flexibility and can incorporate uncertainty information
well. The mechanism of landslide evaluation is complex with
many uncertainties and incomplete information (Jie et al.,
2015). The BP neural network model can calculate the in-
trinsic rules from the vast amount of complex and fuzzy data
in the changing environment and make corresponding infer-
ences. The information about landslides reflected by the data
used in the process of susceptibility assessment is mostly
qualitative rather than quantitative. Through the analysis of
this fuzzy information, accurate assessment results can be
obtained. Landslide susceptibility assessment is essentially
a study of pattern recognition (Feng et al., 2017). The BP
neural network can approximate arbitrary continuous func-
tion with arbitrary precision, so it is widely used in nonlin-
ear modeling, pattern recognition and pattern classification
(Xiong et al., 2010). Because the BP neural network model
is widely used, there are many successful cases as a refer-
ence for the number of neurons in each layer, the parame-
ters of network learning and the optimization of algorithms,
which can effectively improve the reliability and accuracy of
the model (Ke and Li, 2014b).

The LM algorithm, also known as the damped least-
squares method, has the advantage of local fast convergence.
Its strong global searching ability contributes to the strong
extrapolation ability of the trained network. The LM algo-
rithm is a combination of the gradient descent method and
Gauss–Newton method. Its iteration process is no longer
along a single negative gradient direction, which greatly im-
proves the convergence speed and generalization ability of
the network (Li et al., 2016). The BP neural network model,
optimized by the LM algorithm, was used to evaluate the re-
gional landslide susceptibility in this study. MATLAB 2014
with the trainlm training function was used to implement the
LM-BP neural network. The flowchart of LM-BP neural net-
work algorithm is shown in Fig. 3.

Data from 106 landslide disasters were collected near the
research area. Of these landslides, 23 were within the re-
gion of the study area. Most of the landslides located outside
the study area were less than 20 km away from the pipeline.
Due to comparable environmental conditions, these land-
slides could still help us identify the relationship between
landslides and environment factors. In light of the frequency
distribution of each evaluation indicator (Fig. 4), the land-
slide susceptibility grade corresponding to each interval of
the indicators was divided, and then the susceptibility degree
monotonicity in each interval was decided. For this study,
the landslide susceptibility grade was divided into four lev-
els: low (I), medium (II), high (III) and extremely high (IV).
Based on previous research experience and field investiga-

Figure 3. Flowchart of the LM-BP neural network algorithm.

tions (Appendix H), the monotonous intervals of different in-
dicators of susceptibility degrees were judged (Appendix A).
For instance, there were hardly any landslides, only collapses
that occurred in slopes above 60◦. Besides, the susceptibility
degree in the area was monotone decreasing in the slope in-
terval of 60 to 90◦. Because of the very small sliding force
in slopes at 0 to 15◦, landslides were rare to occur here, even
under other extreme conditions (Zhang et al., 2015). On the
basis of the classification criteria of the evaluation indica-
tors used to predict landslide susceptibility degree and the
functional relationship between the evaluation indicators and
landslide probabilities, standard samples (training samples
and test samples) were built using a specific mathematical
method. When establishing the empty matrix, the sample size
of each landslide susceptibility level was set to 200, and the
training sample size was 800. According to the order of sus-
ceptibility from low to high (Appendix A), the input was con-
structed by interpolating for each interval. The interval of the
susceptibility degree is [0, 1], and the output is obtained by
interpolating 800 values equidistantly between the interval
of [0, 1] (Appendix B). Using interpolation theory to build
samples avoided the excess human influence in the process
of building a neural network model by traditional methods.
The training samples and test samples were evaluated using
similar construction methods but with different sample sizes.
Finally, the indicator data were normalized, they were en-
tered into the LM-BP neural network for simulation and 315
slope unit landslide susceptibility values were output.
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Figure 4. The frequency distribution of each indicator in the landslide location. Maps (a), (b), (c), (d), (e), (f), (g) and (h) represent the
elevation, slope, aspect, height difference, TPC, NDVI, MAP and distance from the fault, respectively.

4.4 Vulnerability assessment model for pipelines

The vulnerability evaluation model of pipelines in the land-
slide area was established using the entropy weight method,
which overcame the shortcomings of the traditional weight
method that does not consider the different evaluation indi-
cators and the excessive human influence on the process of
evaluation (Gao et al., 2017; Pal, 2014). Entropy is a method
of measuring the uncertainty of information by using prob-
ability theory (Liu and Zhang, 2011). The entropy indicates
the extent of difference in an indicator: the more different the
data, the greater the role in evaluation (Jia et al., 2007). The
extremum difference method difference method was used to
normalize each indicator value. The decision information of
each index can be expressed by entropy value ei :

rij =
xij −minj {xij }

maxj {xij }−minj {xij }
,

rij =
maxj {xij }− xij

maxj {xij }−minj {xij }
, (1)

ei =

n∑
j=1

p
(
xij

)
lnp

(
xij

)
ln(n)

, (2)

p
(
xij

)
=

rij
n∑

j=1
rij

, (3)

wi =
1− ei

m−
m∑

i=1
ei

, (4)

Hj =

m∑
i=1

wirij , (5)

where n is the number of evaluation objects, and rij repre-
sents the ith evaluation indicator values of j th pipe sections.
Hj is the evaluation value of the pipeline section’s vulnera-
bility; wi is the weight of the evaluation indicator.

Pipeline defect density was obtained from the pipeline in-
ternal inspection data, which consisted of both mileage data
that needed to be converted into three-dimensional coordi-
nate data and pipeline centerline coordinate data obtained
through C# programming. In addition, the main slide direc-
tion of the landslide was replaced by the slope direction that
was extracted by the DEM. The coordinate azimuth of the
pipe section was extracted using the linear vector data of each
pipe section, and the angle between the pipeline and the slope
was calculated using the mathematical method. The calcula-
tion process was solved in the Visual Basic language on Ar-
cGIS using second development functions. Finally, the en-
tropy weight of 5 indicators was calculated by programming
in MATLAB 2014. The entropy weight calculation results
for pipeline landslide vulnerability assessment are shown in
Table 2.

5 Results and comparison

5.1 Regional landslide susceptibility assessment

The LM-BP neural network was trained and the network
was stopped after 182 iterations. An RMSE value of 9.93×
10−9 indicated that the goal of precision had been reached.
Through the simulation of the network test, none of the ab-
solute error values of test data (20 groups) were found to be
greater than 0.02; this result aligned with our expectation of
the precision of the landslide susceptibility assessment. The
landslide susceptibility grade was divided into four levels by
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Table 2. Entropy weight of evaluation indicator.

Depth Angle Defect density Thickness Position

Weight 0.010007 0.101553 0.678851 0.154322 0.055266
Entropy 0.997322 0.97282 0.818308 0.958696 0.985208

Figure 5. Landslide hazard map of study area.

using the equal interval method at intervals of 0.25. The safe
(low-susceptibility) section was located in the central part of
the study area. The dangerous (high-susceptibility) section
was located north and south (Fig. 5). In the study area, most
of the exposed rock was dominated by shale, which belongs
to the easy-slip rock group.

Average altitude ranged from 450 to 1400 m, and the
relative height difference was greater than 80 m, with the
slope between 15 and 35◦. Based on an overlay analysis of
historic landslides within the study area, and susceptibility
zonation maps, we surmised that the probability of land-
slides in the study area was extremely high, and that 87 %
of the landslides occurred in the medium-, high-, and ex-
tremely high-susceptibility areas. Among these landslides,
three were located in low-susceptibility areas, which ac-
counted for 13 % of the landslide disaster sites, five occurred
in medium-susceptibility areas (accounting for 21.7 % of dis-
aster sites), seven occurred in high-susceptibility areas (ac-
counting for 30.4 % of sites) and eight occurred in extremely
high-susceptibility areas (accounting for 34.8 % of sites).
The evaluation results were found to accurately reflect the
trends and rules of distribution of landslides in the study area.
The number and area of slopes in high-susceptibility and ex-

Table 3. Number and area of slopes of four hazard grades.

Landslide Number of Percen- Area Percen-
susceptibility slopes tage (%) (km2) tage (%)

Low (I) 33 10.48 32.63 8.76
Medium (II) 62 19.68 65.53 17.60
High (III) 112 35.56 123.55 33.18
Extremely high (IV) 108 34.29 150.65 40.46
Total 315 100 372.36 100

Table 4. Number and distances of pipeline of four vulnerability
grades.

Pipeline Number of Percen- Area Percen-
vulnerability pipelines tage (%) (km2) tage (%)

Low (I) 120 66.66 50.417 62.06
Medium (II) 37 20.56 20.888 25.72
High (III) 22 12.22 9.833 12.11
Extremely high (IV) 1 0.56 0.087 0.11
Total 180 100 81.225 100

tremely high-susceptibility areas accounted for about 70 % of
the total (Table 3). The probability of landslide occurrence in
the study area was generally high, which was consistent with
the fact that the region was landslide-prone.

5.2 Vulnerability assessment for oil pipeline in
landslide area

The equal interval of 0.25 was used to divide the pipeline vul-
nerability level into four grades to obtain the pipeline vulner-
ability zonation of the study area (Fig. 6). The pipeline in the
northern part of the study area was given a low vulnerability
grade, while the situation in the south of the region is more
serious. The number, length and percentage of pipeline seg-
ments with different grade vulnerabilities are shown in Ta-
ble 4. The number and length of pipeline segments in highly
vulnerable areas (III) and extremely vulnerable areas (IV) ac-
counted for about 12 % of the total.

5.3 Risk assessment for oil pipeline in landslide area

According to natural disaster risk expressions released by the
UN, the definition of risk may be expressed as the product of
landslide susceptibility in a pipeline area and pipeline vul-
nerabilities in the landslide area. Scientific analysis and ex-
pression of disaster risk assessment results can simplify com-
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Figure 6. Pipeline vulnerability map of study area.

plex risk assessments and accelerate findings (Ding and Tian,
2013). There is no unified criterion for disaster evaluation
zoning, and the equal interval method is one of the meth-
ods to express the results more intuitively (Hu et al., 2011;
Jin and Meng, 2011; Wang et al., 2011). The susceptibility
and vulnerability degrees were distinguished using the equal
interval method, and four risk grades were then automati-
cally generated. Where the comprehensive risk assessment
value was within 0 to 0.0625, the corresponding risk grade
was Grade I; the corresponding risk grades with the values of
0.0625 to 0.25, 0.25 to 0.5625 and 0.5625 to 1.0 were Grade
II, III and IV, respectively. The risk grade of each section of
the pipeline within the research area is shown in Fig. 7.

The number of sections with a high-risk grade was 33,
which accounted for 18.33 % of all pipeline sections and rep-
resented 16.57 % of the total pipeline length of 13 461 km.
There were four sections with extremely high-risk grade,
which accounted for 2.22 % of all sections and represented
3.31 % of the total pipeline length of 2.538 km. The section
number and the length of the pipelines lying in high-risk (III)
and extremely high-risk (IV) areas accounted for 20 % of the
total pipeline length, and the risk grade of pipelines inside
Qingchuan and Jian’ge County was relatively high.

5.4 Analysis of risk assessment results

Large or huge landslides were common in areas that we cat-
egorized as extremely high risk, which we defined as those
that were geologically evolving or had experienced obvious
deformations within the last 2 years with cracks that are still
visible. These pipelines were subject to dangers at any time,

Figure 7. Pipeline risk map of study area.

as the pipelines within the areas prone to landslides were
found to contain many defects or extensive damage. These
areas also posed considerable threats; for example, pipeline
ruptures or breaks could lead to leakages or serious deforma-
tions that cause transportation failure. Because these are un-
acceptable events, risk prevention and control measures must
be taken as soon as possible. Pipelines with extremely high
risk were mainly distributed in the following areas: (1) Xiasi
village in Xiasi County (pipe no. K628–K630) and (2) Shi-
weng village–Maliu village of Xiasi County (pipe no. K635–
K637). This section lay in the south of the research area, with
an altitude of 500 to 750 m. Here, the slope conditions af-
fected the distribution of groundwater pore pressure and the
physical and mechanical characteristics of the rock and soil
in three areas: vegetation cover, evaporation and slope ero-
sion. Ultimately, these three factors affected slope stability
(Luo and Tan, 2011). Vertical and horizontal ravines were
also seen in this section, with a relative height difference
greater than 100 m and slopes between 15 to 35◦. Slope de-
grees with obvious changes had a great influence on slope
stability (Chang and Kim, 2004; Hu et al., 2015). The ex-
posed rocks in this area were mainly shale and belonged to
the sliding-prone rock group. Rock type and interlayer struc-
ture were found to be important internal indicators that a
landslide could occur (Guzzetti et al., 1996; Xiang et al.,
2010; Xin et al., 2009). The distance between the fault and
the pipeline in the section was about 2 km with a NDVI of
about 0.75 and MAP of about 970 mm. Faulted zones and
nearby rock and earth masses that were destroyed in a geo-
logic event reduced the integrity of a slope, and the faults and
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important groundwater channels could also cause deforma-
tion and damage to a slope (Liu, 2009). The pipelines in these
areas exhibited many defects. Most pipelines passed through
the slope in an inclined or horizontal way, an attribute that
typically increased the risk of a landslide occurring.

In high-risk areas, small or moderate landslides commonly
occurred in areas that we have categorized as high risk. They
were in the process of deformation, or had obvious deforma-
tion recently (within 2 years), such as cracks, subsidence, or
tympanites on the landslide, and, in some cases, even shear.
The pipelines in these areas had defects and were buried at
a shallow depth. If a landslide occurred in this pipeline area,
it could cause pipe suspension, floating and damage. It could
also contribute to a small to moderate leakage of the multiple
petroleum products, such as gasoline, diesel and kerosene.
However, damaged pipes can be welded or repaired. Moni-
toring is critical in high-risk areas. In our study, the pipeline
high-risk area was defined as the following areas: (1) Xiasi
town–Xiasi village–Shiweng village (pipe no. K622–K633)
and (2) Xiasi town–Maliu village–Jinzishan Xiangdasang
village (pipe no. K635–K642). This area was located south of
the pipe, which was buried in the study area. The altitude of
the study area was between 450 and 800 m, the relative ele-
vation difference was over 100 m and the slope was between
15 and 40◦. Most of the outcrops in this area were quartz
sandstone, which belongs to the easy-sliding rock group. The
pipes in this area were about 2.5 km away from faults. The
NDVI was about 0.6 to 0.8, and MAP was about 970 nm.
Pipes showed many defects, most of them either crossing the
slope or lying in the center of slope. All of the above factors
provided sufficient conditions for the formation of landslide.

In the medium-risk areas, only small landslides were
found to occur, and we observed no sign of deformation. But
through the analysis of geological structure, topography and
landform, we found the area to demonstrate a tendency for
developing landslides. The pipes in this risk area exhibited
almost no faults and were buried deep beneath the ground.
However, under bad conditions, the landslides in these areas
could also affect the pipes’ safety, causing the pipes to be-
come exposed or deformed. These areas need simple mon-
itoring. For our study, medium-risk areas were defined as
follows: (1) Sanlong village of Dongxihe township–Panlong
town–Dongsheng village (pipe no. K559–K593). (2) Panlong
town–Qinlao village–Wu’ai village (pipe no. K595–K597).
(3) Baolun town–Laolin’gou village–Xiasi town–Youyu vil-
lage (pipe no. K599–K630).

In the low-risk areas, landslides did not occur under or-
dinary conditions, but they could occur if a strong earth-
quake hit or if the area experienced continuous or heavy
rain. The pipes in low-risk areas showed no defects and were
buried very deep. They were also located far away from ar-
eas affected by landslides. Therefore, landslides in these ar-
eas caused no obvious damage to the pipes and few threat-
ened the safety of pipes. However, regular inspection is nec-
essary to ensure that the pipes continue to operate safely.

Table 5. Number and distances of pipeline of four risk grades.

Pipeline risk Number of Percen- Area Percen-
pipelines tage (%) (km2) tage (%)

Low (I) 37 20.56 14.469 17.81
Medium (II) 106 58.89 50.757 62.49
High (III) 33 18.33 13.461 16.57
Extremely (IV) 4 2.22 2.538 3.13
Total 180 100 81.225 100

The low-risk areas were defined as follows: (1) Panlong
town–Dongsheng village–Qinlao village (pipe no. K591–
K597) and (2) Baolun town–Xiaojia village–Baolun town–
Laolin’gou village (pipe no. K599–K608).

Through comprehensive analysis of each risk level area,
we compiled a list of pipeline landslide risks (Table 6).
This list describes each landslide risk level in four respects:
pipeline risk, landslide susceptibility, pipeline vulnerability
and risk control measures.

The main purpose of this study was to provide managers
and planners a comprehensive assessment of landslide risk
in areas containing pipelines. The results offer information
on the possibility of failure of slopes. The landslide suscep-
tibility maps could help planners reorganize and plan future
pipeline construction. Pipeline vulnerability maps could as-
sist engineers in pipeline maintenance operations. Based on
this final risk map, managers and engineers can then make
decisions and formulate prescriptions that will have highly
predictable results for safely transporting petroleum prod-
ucts, relocating settlements and significantly reducing the
risk of any adverse effects.

Future research could explore detailed comparison of dif-
ferent methods and recommend one or more optimal ap-
proaches. Moreover, This study shows that landslide risk as-
sessments can be performed with a minimal number of rel-
atively easy to obtain datasets. We advocate establishing a
database with assessment parameters similar to the one de-
scribed by this study to construct dynamic landslide risk as-
sessment models.

6 Conclusions

The faults inherent to traditional landslide risk assessments
include excessive human influence, failure of pipeline vul-
nerability assessments to consider the interaction between
landslide disaster and pipeline ontology, and the low quan-
tification degree of risk assessment results.

Taking the Guangyuan section (82 km) of the LCC oil and
gas pipeline as an example, we used GIS and RS technology
to establish a regional landslide susceptibility assessment
model based on the LM-BP neural network. We determined
that there were 112 and 108 slopes in high-susceptibility
and extremely high-susceptibility areas that accounted for
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Table 6. Description of pipeline risk level.

Pipeline Landslide Vulnerability Risk Control
risk susceptibility measures

Low (I) The landslide will not hap-
pen under ordinary con-
ditions, but it will oc-
cur when strong earth-
quakes, long-lasting con-
tinuous rain or extremely
heavy rain occur as well.

The pipes in low-risk ar-
eas have no defects and are
buried very deeply. Mean-
while, they are far away
from the area affected by
landslides.

Landslides cause no obvi-
ous damage to the pipes
and few threats to pipe
safety.

Regular
inspection

Medium (II) Small landslides (volume
of less than 100 000 m3)
mainly occur with no
signs of deformation, but
through analyzing geolog-
ical structures, topography
and landforms a tendency
for landslides is found.

The pipes have almost
no faults and are buried
deeply. However, under
bad conditions, landslides
may also affect pipe safety.

The landslide may cause
the pipes to become ex-
posed or deformed.

Simple
monitoring

High (III) Landslides are mostly
small to moderate (volume
between 100 000 and
1 million m3), and they are
in deformations or have
recently had obvious de-
formation, such as cracks,
subsidence, or tympanites
on the landslide, and, in
some cases, even shear

The pipeline has defects
and is buried shallowly.
Once landslides occur in
the pipeline area, pipe
safety will be threatened.

The safety of pipeline will
be threatened and may
suffer from pipe suspen-
sion, floating and damage,
etc. Therefore, it will con-
tribute to a small amount
of petroleum product leak-
age. Fortunately, the pipe
can be welded or repaired.

Intensive
monitoring

Extremely
high (IV)

Large (volume between
1 million and 10 mil-
lion m3) or huge (volume
greater than 10 million m3)
landslides are common in
the areas with extremely
high risk, which are chang-
ing or have experienced
obvious deformation re-
cently with visible cracks.

The pipelines are subject
to dangers at any time as
the pipelines within the
area prone to landslides
have been observed as hav-
ing many defects or a lot of
damage.

There are extreme dan-
gers, for example pipeline
rupture or break, and these
may lead to consider-
able leakage of multiple
petroleum products or
serious deformation and
even interruption of oil
and gas transportation.

Prevention and
control measures
should be taken as
soon as possible.

33.18 % and 40.46 % of the total area of the study area, re-
spectively. Then, we established the model of pipeline vul-
nerability evaluation based on the entropy weight method
by combining the pipeline body and the environmental in-
formation. The number and length of pipe segments in the
highly vulnerable (III) and extremely vulnerable areas (IV)
accounted for about 12 % of the total. Finally, based on the
susceptibility assessment and the vulnerability assessment,
we completed the risk assessment and risk division of the oil
pipeline, thus forming a geological disaster risk assessment
model and a method for oil pipeline and landslide risk as-
sessment. The risk assessment results demonstrated that the
number and length of high-susceptibility and extremely high-
susceptibility pipeline segments represented 20 % of the to-

tal. Similarly, the pipeline risk within Qingchuan and Jian’ge
counties was relatively high. Our pipeline landslide risk as-
sessment has laid a foundation for the future study of pipeline
safety management and pipeline failure consequence loss as-
sessment.

Data availability. DEM data can be downloaded from the Geospa-
tial Data Cloud (http://www.gscloud.cn/, last access: Octo-
ber 2016). Precipitation data (dataset of annual surface observa-
tion values in China between the years 1981 and 2010) are pro-
vided by China Meteorological Administration (http://data.cma.cn/,
last access: January 2017). Geological maps, landslide data and
pipeline mileage data can be requested by email from the author
at neu_xjn@163.com.
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Appendix A

Table A1. Classification of landslide susceptibility grade corresponding to different intervals.

Factor Indicators Interval Susceptibility degree Susceptibility level
monotonicity

Elevation [1000, highest] Decreasing Low susceptibility (I)
[Lowest, 600) Increasing Medium susceptibility (II)
[800, 1000) Decreasing High susceptibility (III)
[600,700)∪ [700,800) Increasing, decreasing Extremely high susceptibility (IV)

Slope [60, 90) Decreasing Low susceptibility (I)
[0, 15) Increasing Medium susceptibility (II)
[30, 60) Decreasing High susceptibility (III)
[15,20)∪ [20,30) Increasing, decreasing Extremely high susceptibility (IV)

Landform Aspect [0,45)∪ [270,360) Increasing, decreasing Low susceptibility (I)
[225,270)∪ [45,90) Decreasing, increasing Medium susceptibility (II)
[90,135)∪ [180,225) Increasing, decreasing High susceptibility (III)
[135,157.5)∪ [157.5,180) Increasing, decreasing Extremely high susceptibility (IV)

Height difference [Lowest, 100) Increasing Low susceptibility (I)
[900,highest] ∪ [100,200) Decreasing, increasing Medium susceptibility (II)
[600,900)∪ [200,300) Decreasing, increasing High susceptibility (III)
[300,450)∪ [450,600) Increasing, decreasing Extremely high susceptibility (IV)

Topographic profile [Lowest, −0.025) Increasing Low susceptibility (I)
curvature [0.025, highest] Decreasing Medium susceptibility (II)

[−0.025,−0.01)∪ [0.01,0.025) Increasing, decreasing High susceptibility (III)
[−0.01,0)∪ [0,0.01) Increasing, decreasing Extremely high susceptibility (IV)

Land cover NDVI [−1,0) Increasing Low susceptibility (I)
[0,0.6)∪ [0.9,1] Increasing, decreasing Medium susceptibility (II)
[0.6,0.7)∪ [0.8,0.9) Increasing, decreasing High susceptibility (III)
[0.7,0.75)∪ [0.75,0.8) Increasing, decreasing Extremely high susceptibility (IV)

Precipitation Mean annual [1100, highest) Decreasing Low susceptibility (I)
precipitation [Lowest, 960) Increasing Medium susceptibility (II)

[990, 1100) Decreasing High susceptibility (III)
[960,975)∪ [975,990) Increasing, decreasing Extremely high susceptibility (IV)

Geology Distance from [20, highest] Decreasing Low susceptibility (I)
the fault [15, 20) Decreasing Medium susceptibility (II)

[5, 15) Decreasing High susceptibility (III)
[0, 5) Decreasing Extremely high susceptibility (IV)
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Appendix B

Table B1. Standard training sample matrix and standard test sample matrix.

Sample type ID Input Output

Aspect Slope Elevation NDVI MAP Height difference TPC Distance Lithology

1 0.2 89.9 438 −1 908.1 33 −0.582 25 1 0
50 35.2 82.8 453 0 912.2 79 −0.456 23.47 1 0.06

100 297.1 75.7 469 0.88 916.3 115 −0.33 21.9 1 0.12
150 329.3 67.6 485 0.95 920.4 167 −0.168 20.34 1 0.19

Training 200 359.5 60 499 1 924.9 200 0.628 18.77 1 0.25
sample 250 68.4 3.8 1293 0.73 930.4 1097 0.486 17.21 2 0.31

300 89.3 8.2 1206 0.65 938 1039 0.326 15.64 2 0.37
350 246 12 1102 0.56 943.6 977 0.183 14.08 2 0.44
400 269.3 15 1002 0.5 949.8 902 −0.142 12.52 2 0.5
450 113.4 52.9 952 0.46 960.6 848 −0.018 10.95 3 0.56
500 134.8 46.3 905 0.4 972.6 757 −0.012 9.39 3 0.62

1 27.2 72.3 458 0.8 911.6 59 −0.544 25 1 0
2 28.5 71.6 468 0.81 914.3 74 −0.453 23.69 1 0.06
3 31.5 69.5 488 0.85 915.8 86 −0.381 22.37 1 0.11
4 37.8 66.2 490 0.86 917.1 100 −0.228 21.06 1 0.16
5 38.6 62.1 497 0.86 919.1 152 −0.03 19.74 1 0.22
6 56.1 4.4 1141 0.7 934.2 939 0.439 18.43 2 0.27
7 57.3 6.6 1240 0.68 939.6 941 0.429 17.11 2 0.32
8 65.3 9.8 1257 0.66 945.1 1124 0.413 15.79 2 0.37

Test 9 68.2 11 1290 0.56 948.8 1135 0.318 14.48 2 0.43
sample 10 74.7 11.9 1382 0.53 949.9 1146 0.148 13.16 2 0.48

11 92.4 30.4 848 0.47 963.4 613 −0.019 11.85 3 0.53
12 92.7 31.8 853 0.45 970.5 683 −0.016 10.53 3 0.58
13 101.9 44.7 900 0.45 980.5 737 −0.015 9.22 3 0.64
14 110.1 50.9 917 0.35 987 817 −0.015 7.9 3 0.69
15 115.6 57.5 933 0.32 994.2 835 −0.015 6.58 3 0.74
16 140.6 15.6 502 0.14 1001.5 245 0.019 5.27 4 0.79
17 155.4 20 626 0.14 1002.3 256 0.008 3.95 4 0.85
18 157.1 24.8 690 0.08 1010.6 293 0.007 2.64 4 0.9
19 177.6 27.3 765 0.06 1012.7 392 0.004 1.32 4 0.95
20 178.3 29.6 795 0.04 1022.7 446 0.001 0 4 1

Nat. Hazards Earth Syst. Sci., 19, 629–653, 2019 www.nat-hazards-earth-syst-sci.net/19/629/2019/



J. Xiong et al.: Landslide risk zonation for areas containing multiproduct oil transport pipelines 641

Appendix C

Table C1. Test error of LM-BP neural network.

Number Expected Network Error
value output

1 0 0.0006 0.0006
2 0.06 0.0548 −0.0052
3 0.11 0.1113 0.0013
4 0.16 0.1699 0.0099
5 0.22 0.2302 0.0102
6 0.27 0.2614 −0.0086
7 0.32 0.315 −0.005
8 0.37 0.3697 −0.0003
9 0.43 0.4266 −0.0034
10 0.48 0.4899 0.0099
11 0.53 0.5153 −0.0147
12 0.58 0.5765 −0.0035
13 0.64 0.6405 0.0005
14 0.69 0.701 0.011
15 0.74 0.7523 0.0123
16 0.79 0.8094 0.0194
17 0.85 0.8616 0.0116
18 0.9 0.9155 0.0155
19 0.95 0.9675 0.0175
20 1 1.0173 0.0173

Appendix D

Table D1. Coordinates of the centerline and ancillary facilities of the pipeline. Secrecy regulations regarding geographical coordinate data
in the People’s Republic of China stipulate that the first three digits of each location’s coordinates remain confidential. In this table, this has
been represented by ellipses.

Point number Previous point Material Diameter Pressure Depth Coordinate Elevation

(mm) (m) X Y H

Marker peg – – – – · · ·576.265 · · ·4357.849 503.877 –

GD1.421 GD1.420 Steel 168 high 2.2 · · ·572.111 · · ·4352.109 504.235 502.035
GD1.422 GD1.421 Steel 168 high 1.9 · · ·571.837 · · ·4336.010 503.866 501.966
GD1.423 GD1.422 Steel 168 high 2.1 · · ·571.538 · · ·4319.679 503.694 501.594
GD1.424 GD1.423 Steel 168 high 2.1 · · ·571.093 · · ·4308.825 503.510 501.410
GD1.425 GD1.424 Steel 168 high 2.0 · · ·570.718 · · ·4288.141 503.733 501.733

Detective pole K566 – – – – · · ·575.536 · · ·4284.069 503.494 –

GD1.426 GD1.425 Steel 168 high 2.3 · · ·570.603 · · ·4275.147

Mileage peg K566+200 – – – – · · ·574.641 · · ·4258.41 503.224 –

GD1.427 GD1.426 Steel 168 high 2.0 · · ·570.222 · · ·4258.593 503.710 501.710
GD1.428 GD1.427 Steel 168 high 1.6 · · ·570.090 · · ·4247.642 503.283 501.683
GD1.429 GD1.428 Steel 168 high 2.3 · · ·569.458 · · ·4216.618 502.468 500.168
GD1.430 GD1.429 Steel 168 high 2.9 · · ·569.043 · · ·4208.558 504.055 501.155
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Appendix E

Table E1. Internal detection data of each pipeline.

Feature ID Pipe Distance Feature type Remarks Length Thickness
number (m) (mm) (mm)

1 10 6.408 Pipe segment Spiral weld 652 11.1
2 20 7.060 Pipe segment – 1178 –
3 20 7.648 Fixed punctuation point Valve centerline – –
4 20 7.650 Valve Centerline – –
5 30 8.238 Pipe segment Spiral weld 768 11.1
6 40 9.006 Pipe segment – 2184 –
7 40 10.100 Globular tee Centerline – –
8 50 11.190 Pipe segment Spiral weld 1700 11.1
9 50 11.445 Pit – 548 11.1
10 60 12.890 Pipe segment Straight weld 2342 13.6
11 60 12.890 Wall thickness variation from 11.1 to 13.6 mm – –
13 70 15.232 Pipe segment Spiral weld 1999 11.1
14 70 15.232 Wall thickness variation From 13.6 to 11.1 mm – –
15 80 17.231 Pipe segment Straight weld 2352 13.4
16 80 17.231 Wall thickness variation From 11.1 to 13.4 mm – –
18 90 19.583 Pipe segment Spiral weld 11 557 11.1
19 90 19.583 Wall thickness variation From 13.4 to 11.1 mm – –
20 90 28.060 Attachments – 598 11.1
21 100 31.140 Pipe segment – 991 –
22 100 31.580 Flange centerline – –
23 110 32.131 Pipe segment Spiral weld 11 660 11.1
24 120 43.791 Pipe segment Spiral weld 5536 11.1
25 130 49.327 Pipe segment Straight weld 2213 16.2
26 130 49.327 Wall thickness variation From 11.1 to 16.2 mm – –
28 140 51.540 Pipe segment Spiral weld 5608 11.1
29 140 51.540 Wall thickness variation From 16.2 to 11.1 mm – –
30 150 57.148 Pipe segment Spiral weld 9432 11.1

Nat. Hazards Earth Syst. Sci., 19, 629–653, 2019 www.nat-hazards-earth-syst-sci.net/19/629/2019/



J. Xiong et al.: Landslide risk zonation for areas containing multiproduct oil transport pipelines 643

Appendix F: Core code of pipeline defect point
coordinate calculating program
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Appendix G

Table G1. Pipeline landslide risk assessment results.

FID Start Terminus Susceptibility Susceptibility Vulnerability Vulnerability Risk Risk
level level level

1 K558 K559+446 0.874 IV 0.168 I 0.147 II
2 K559+446 K563+718 0.874 IV 0.178 I 0.156 II
3 K563+718 K564+883 0.932 IV 0.143 I 0.133 II
4 K564+883 K566+90 0.943 IV 0.149 I 0.141 II
5 K566+90 K567+117 0.943 IV 0.280 II 0.264 III
6 K567+117 K567+224 0.766 IV 0.095 I 0.073 I
7 K567+224 K567+384 0.729 III 0.117 I 0.085 II
8 K567+384 K567+674 0.729 III 0.079 I 0.058 I
9 K567+674 K567+782 0.729 III 0.141 I 0.103 II
10 K567+782 K567+846 0.729 III 0.066 I 0.048 I
11 K567+846 K567+904 0.729 III 0.097 I 0.071 I
12 K568+904 K568+197 0.722 III 0.154 I 0.111 II
13 K568+197 K568+430 0.763 IV 0.144 I 0.110 II
14 K569+430 K569+419 0.739 III 0.186 I 0.137 II
15 K569+419 K569+443 0.739 III 0.141 I 0.104 II
16 K569+443 K569+467 0.739 III 0.107 I 0.079 II
17 K569+467 K569+578 0.739 III 0.121 I 0.089 II
18 K569+578 K569+920 0.739 III 0.107 I 0.079 II
19 K571+920 K571+123 0.736 III 0.127 I 0.093 II
20 K571+123 K571+982 0.799 IV 0.109 I 0.087 II
21 K572+982 K572+729 0.753 IV 0.090 I 0.068 I
22 K573+729 K573+548 0.802 IV 0.094 I 0.075 I
23 K574+548 K574+249 0.805 IV 0.084 I 0.068 I
24 K574+249 K574+525 0.805 IV 0.150 I 0.121 II
25 K575+525 K575+538 0.805 IV 0.115 I 0.093 II
26 K575+538 K575+600 0.805 IV 0.157 I 0.126 II
27 K576+600 K576+737 0.816 IV 0.108 I 0.088 II
28 K577+737 K577+120 0.889 IV 0.089 I 0.079 I
29 K577+120 K577+146 0.889 IV 0.094 I 0.084 I
30 K577+146 K577+187 0.889 IV 0.169 I 0.150 II
31 K578+187 K578+571 0.889 IV 0.118 I 0.105 II
32 K578+571 K578+608 0.889 IV 0.095 I 0.084 I
33 K579+608 K579+624 0.853 IV 0.133 I 0.113 II
34 K580+624 K580+582 0.871 IV 0.156 I 0.136 II
35 K581+582 K581+43 0.871 IV 0.097 I 0.084 I
36 K581+43 K581+273 0.871 IV 0.143 I 0.125 II
37 K581+273 K581+536 0.880 IV 0.125 I 0.110 II
38 K581+536 K581+659 0.872 IV 0.154 I 0.134 II
39 K582+659 K582+263 0.830 IV 0.152 I 0.126 II
40 K582+263 K582+437 0.830 IV 0.116 I 0.096 II
41 K583+437 K583+512 0.830 IV 0.152 I 0.126 II
42 K583+512 K583+693 0.798 IV 0.105 I 0.084 II
43 K583+693 K583+720 0.740 III 0.113 I 0.084 II
44 K585+720 K585+55 0.740 III 0.178 I 0.132 II
45 K585+55 K585+101 0.668 III 0.196 I 0.131 II
46 K585+101 K585+370 0.668 III 0.178 I 0.119 II
47 K585+370 K585+634 0.696 III 0.190 I 0.132 II
48 K585+634 K585+734 0.668 III 0.116 I 0.077 II
49 K585+734 K585+908 0.627 III 0.198 I 0.124 II
50 K585+908 K585+949 0.627 III 0.168 I 0.105 II

www.nat-hazards-earth-syst-sci.net/19/629/2019/ Nat. Hazards Earth Syst. Sci., 19, 629–653, 2019



646 J. Xiong et al.: Landslide risk zonation for areas containing multiproduct oil transport pipelines

Table G1. Continued.

FID Start Terminus Susceptibility Susceptibility Vulnerability Vulnerability Risk Risk
level level level

51 K586+949 K586+782 0.627 III 0.173 I 0.108 II
52 K586+782 K586+805 0.627 III 0.117 I 0.073 II
53 K587+805 K587+364 0.627 III 0.171 I 0.107 II
54 K587+364 K587+498 0.618 III 0.078 I 0.048 I
55 K587+498 K587+794 0.618 III 0.107 I 0.066 I
56 K589+794 K589+251 0.618 III 0.102 I 0.063 I
57 K590+251 K590+757 0.618 III 0.172 I 0.106 II
58 K590+757 K590+780 0.556 III 0.153 I 0.085 II
59 K590+780 K590+812 0.556 III 0.123 I 0.068 II
60 K591+812 K591+500 0.555 III 0.135 I 0.075 II
61 K591+500 K591+946 0.555 III 0.087 I 0.048 I
62 K592+946 K592+259 0.555 III 0.107 I 0.059 I
63 K593+259 K593+631 0.517 III 0.152 I 0.079 II
64 K593+631 K593+912 0.374 II 0.153 I 0.057 II
65 K594+912 K594+993 0.374 II 0.150 I 0.056 II
66 K595+993 K595+203 0.374 II 0.076 I 0.028 I
67 K595+203 K595+261 0.359 II 0.114 I 0.041 I
68 K595+261 K595+383 0.359 II 0.099 I 0.036 I
69 K596+383 K596+383 0.412 II 0.278 II 0.115 II
70 K596+383 K596+429 0.412 II 0.107 I 0.044 I
71 K597+429 K597+62 0.359 II 0.121 I 0.043 I
72 K597+62 K597+200 0.412 II 0.158 I 0.065 II
73 K597+200 K597+345 0.412 II 0.133 I 0.055 I
74 K597+345 K597+680 0.412 II 0.273 II 0.112 II
75 K599+680 K599+376 0.321 II 0.461 II 0.148 II
76 K599+376 K599+693 0.211 I 0.105 I 0.022 I
77 K600+693 K600+188 0.211 I 0.179 I 0.038 I
78 K600+188 K600+353 0.106 I 0.172 I 0.018 I
79 K601+353 K601+369 0.106 I 0.264 II 0.028 I
80 K602+369 K602+495 0.099 I 0.190 I 0.019 I
81 K603+495 K603+131 0.067 I 0.436 II 0.029 I
82 K603+131 K603+551 0.099 I 0.144 I 0.014 I
83 K604+551 K604+321 0.104 I 0.253 II 0.026 I
84 K604+321 K604+976 0.099 I 0.102 I 0.010 I
85 K605+976 K605+735 0.178 I 0.372 II 0.066 II
86 K606+735 K606+368 0.236 I 0.637 III 0.150 II
87 K606+368 K606+838 0.236 I 0.127 I 0.030 I
88 K607+838 K607+596 0.323 II 0.407 II 0.131 II
89 K608+596 K608+20 0.323 II 0.163 I 0.053 II
90 K608+20 K608+287 0.323 II 0.145 I 0.047 I
91 K608+287 K608+546 0.346 II 0.084 I 0.029 I
92 K608+546 K608+583 0.406 II 0.215 I 0.087 II
93 K608+583 K608+835 0.406 II 0.291 II 0.118 II
94 K609+835 K609+565 0.442 II 0.279 II 0.123 II
95 K610+565 K610+564 0.442 II 0.403 II 0.178 II
96 K610+564 K610+945 0.442 II 0.453 II 0.200 II
97 K611+945 K611+89 0.482 II 0.117 I 0.056 I
98 K611+89 K611+691 0.501 III 0.138 I 0.069 II
99 K612+691 K612+413 0.501 III 0.175 I 0.088 II
100 K613+413 K613+269 0.501 III 0.163 I 0.082 II
101 K613+269 K613+442 0.502 III 0.166 I 0.083 II
102 K614+442 K614+83 0.502 III 0.354 II 0.178 II
103 K614+83 K614+980 0.502 III 0.263 II 0.132 II
104 K615+980 K615+218 0.601 III 0.153 I 0.092 II
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Table G1. Continued.

FID Start Terminus Susceptibility Susceptibility Vulnerability Vulnerability Risk Risk
level level level

105 K615+218 K615+388 0.601 III 0.143 I 0.086 II
106 K616+388 K616+87 0.635 III 0.126 I 0.080 II
107 K616+87 K616+300 0.556 III 0.144 I 0.080 II
108 K616+300 K616+460 0.505 III 0.269 II 0.136 II
109 K617+460 K617+715 0.505 III 0.172 I 0.087 II
110 K617+715 K617+827 0.505 III 0.255 II 0.129 II
111 K618+827 K618+28 0.556 III 0.170 I 0.095 II
112 K618+28 K618+687 0.556 III 0.313 II 0.174 II
113 K620+687 K620+78 0.556 III 0.188 I 0.105 II
114 K620+78 K620+298 0.425 II 0.196 I 0.083 II
115 K621+298 K621+509 0.576 III 0.223 I 0.128 II
116 K621+509 K621+611 0.425 II 0.107 I 0.045 I
117 K622+611 K622+10 0.425 II 0.262 II 0.111 II
118 K622+10 K622+86 0.425 II 0.122 I 0.052 I
119 K622+86 K622+539 0.693 III 0.178 I 0.123 II
120 K622+539 K622+897 0.634 III 0.549 III 0.348 III
121 K623+897 K623+36 0.634 III 0.535 III 0.339 III
122 K623+36 K623+794 0.693 III 0.145 I 0.100 II
123 K624+794 K624+866 0.693 III 0.310 II 0.215 II
124 K625+866 K625+242 0.796 IV 0.137 I 0.109 II
125 K627+242 K627+60 0.859 IV 0.452 II 0.388 III
126 K627+60 K627+162 0.859 IV 0.193 I 0.166 II
127 K627+162 K627+313 0.859 IV 0.166 I 0.143 II
128 K627+313 K627+700 0.783 IV 0.167 I 0.131 II
129 K628+700 K628+146 0.908 IV 0.501 III 0.455 III
130 K628+146 K628+196 0.908 IV 0.139 I 0.126 II
131 K628+196 K628+610 0.908 IV 0.631 III 0.573 IV
132 K629+610 K629+355 0.787 IV 0.369 II 0.290 III
133 K629+355 K629+525 0.787 IV 0.729 III 0.574 IV
134 K629+525 K629+570 0.787 IV 0.252 II 0.198 II
135 K629+570 K629+620 0.787 IV 0.465 II 0.366 III
136 K630+620 K630+348 0.787 IV 0.286 II 0.225 II
137 K630+348 K630+956 0.892 IV 0.389 II 0.347 III
138 K631+956 K631+116 0.886 IV 0.423 II 0.375 III
139 K631+116 K631+528 0.805 IV 0.513 III 0.413 III
140 K633+528 K633+435 0.805 IV 0.568 III 0.457 III
141 K635+435 K635+302 0.933 IV 0.625 III 0.583 IV
142 K635+302 K635+326 0.884 IV 0.611 III 0.540 III
143 K635+326 K635+359 0.884 IV 0.441 II 0.390 III
144 K635+359 K635+368 0.884 IV 0.194 I 0.171 II
145 K635+368 K635+530 0.884 IV 0.374 II 0.331 III
146 K635+530 K635+604 0.884 IV 0.307 II 0.271 III
147 K635+604 K635+850 0.805 IV 0.377 II 0.303 III
148 K635+850 K635+943 0.805 IV 0.234 I 0.188 II
149 K635+943 K635+972 0.805 IV 0.139 I 0.112 II
150 K635+972 K635+974 0.805 IV 0.121 I 0.097 II
151 K635+974 K635+990 0.805 IV 0.138 I 0.111 II
152 K636+990 K636+152 0.933 IV 0.598 III 0.558 III
153 K636+152 K636+159 0.933 IV 0.157 I 0.146 II
154 K636+159 K636+320 0.884 IV 0.579 III 0.512 III
155 K636+320 K636+427 0.884 IV 0.166 I 0.147 II
156 K636+427 K636+517 0.884 IV 0.124 I 0.110 II
157 K636+517 K636+806 0.834 IV 0.663 III 0.553 III
158 K636+806 K636+893 0.834 IV 0.794 IV 0.662 IV
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Table G1. Continued.

FID Start Terminus Susceptibility Susceptibility Vulnerability Vulnerability Risk Risk
level level level

159 K637+893 K637+57 0.834 IV 0.519 III 0.433 III
160 K637+57 K637+109 0.834 IV 0.542 III 0.452 III
161 K637+109 K637+181 0.834 IV 0.111 I 0.093 II
162 K637+181 K637+332 0.834 IV 0.127 I 0.106 II
163 K638+332 K638+87 0.834 IV 0.608 III 0.507 III
164 K638+87 K638+140 0.834 IV 0.157 I 0.131 II
165 K638+140 K638+193 0.767 IV 0.682 III 0.523 III
166 K638+193 K638+199 0.767 IV 0.188 I 0.144 II
167 K638+199 K638+226 0.767 IV 0.126 I 0.097 II
168 K638+226 K638+368 0.767 IV 0.532 III 0.408 III
169 K638+368 K638+409 0.767 IV 0.604 III 0.463 III
170 K638+409 K638+432 0.767 IV 0.205 I 0.157 II
171 K638+432 K638+444 0.767 IV 0.525 III 0.403 III
172 K638+444 K638+676 0.767 IV 0.173 I 0.133 II
173 K638+676 K638+837 0.767 IV 0.479 II 0.367 III
174 K639+837 K639+266 0.744 III 0.483 II 0.359 III
175 K639+266 K639+339 0.744 III 0.427 II 0.318 III
176 K639+339 K639+435 0.744 III 0.549 III 0.408 III
177 K639+435 K639+562 0.631 III 0.324 II 0.204 II
178 K640+562 K640+63 0.607 III 0.476 II 0.289 III
179 K641+63 K641+600 0.607 III 0.604 III 0.367 III
180 K642+600 K642+225 0.607 III 0.461 II 0.280 III
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Appendix H: Field environment of study area

Figure H1. Vegetation distribution in a watershed in the study area.

Figure H2. Vegetation environment of a pipeline section in the study area.
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Figure H3. Outcropping of rock strata in the study area.
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