Articles | Volume 18, issue 8
Nat. Hazards Earth Syst. Sci., 18, 2161–2181, 2018
https://doi.org/10.5194/nhess-18-2161-2018
Nat. Hazards Earth Syst. Sci., 18, 2161–2181, 2018
https://doi.org/10.5194/nhess-18-2161-2018

Research article 23 Aug 2018

Research article | 23 Aug 2018

Global fatal landslide occurrence from 2004 to 2016

Melanie J. Froude and David N. Petley

Related authors

Real-time prediction of rain-triggered lahars: incorporating seasonality and catchment recovery
Robbie Jones, Vern Manville, Jeff Peakall, Melanie J. Froude, and Henry M. Odbert
Nat. Hazards Earth Syst. Sci., 17, 2301–2312, https://doi.org/10.5194/nhess-17-2301-2017,https://doi.org/10.5194/nhess-17-2301-2017, 2017
Short summary

Related subject area

Landslides and Debris Flows Hazards
Nepalese landslide information system (NELIS): a conceptual framework for a web-based geographical information system for enhanced landslide risk management in Nepal
Sansar Raj Meena, Florian Albrecht, Daniel Hölbling, Omid Ghorbanzadeh, and Thomas Blaschke
Nat. Hazards Earth Syst. Sci., 21, 301–316, https://doi.org/10.5194/nhess-21-301-2021,https://doi.org/10.5194/nhess-21-301-2021, 2021
Short summary
Modelling landslide hazards under global changes: the case of a Pyrenean valley
Séverine Bernardie, Rosalie Vandromme, Yannick Thiery, Thomas Houet, Marine Grémont, Florian Masson, Gilles Grandjean, and Isabelle Bouroullec
Nat. Hazards Earth Syst. Sci., 21, 147–169, https://doi.org/10.5194/nhess-21-147-2021,https://doi.org/10.5194/nhess-21-147-2021, 2021
Short summary
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
Lorenzo Marchi, Federico Cazorzi, Massimo Arattano, Sara Cucchiaro, Marco Cavalli, and Stefano Crema
Nat. Hazards Earth Syst. Sci., 21, 87–97, https://doi.org/10.5194/nhess-21-87-2021,https://doi.org/10.5194/nhess-21-87-2021, 2021
Short summary
The potential of Smartstone probes in landslide experiments: how to read motion data
J. Bastian Dost, Oliver Gronz, Markus C. Casper, and Andreas Krein
Nat. Hazards Earth Syst. Sci., 20, 3501–3519, https://doi.org/10.5194/nhess-20-3501-2020,https://doi.org/10.5194/nhess-20-3501-2020, 2020
Short summary
INSPIRE standards as a framework for artificial intelligence applications: a landslide example
Gioachino Roberti, Jacob McGregor, Sharon Lam, David Bigelow, Blake Boyko, Chris Ahern, Victoria Wang, Bryan Barnhart, Clinton Smyth, David Poole, and Stephen Richard
Nat. Hazards Earth Syst. Sci., 20, 3455–3483, https://doi.org/10.5194/nhess-20-3455-2020,https://doi.org/10.5194/nhess-20-3455-2020, 2020
Short summary

Cited articles

Ahmed, B.: Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh, Landslides, 12, 1077–1095, https://doi.org/10.1007/s10346-014-0521-x, 2015. 
Alcántara-Ayala, I., Sassa, K., Mikoš, M., Han, Q., Rhyner, J., Takara, K., Nishikawa, S., Rouhban, B., and Briceño, S.: The 4th World Landslide Forum: Landslide Research and Risk Reduction for Advancing the Culture of Living with Natural Hazards, Int. J. Disaster Risk Sci., 8, 498–502, https://doi.org/10.1007/s13753-017-0139-4, 2017. 
Alexander, D.: Urban landslides, Prog. Phys. Geog.-Earth and Environment, 13, 157–189, https://doi.org/10.1177/030913338901300201, 1989. 
Allen, S. K., Rastner, P., Arora, M., Huggel, C., and Stoffel, M.: Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition, Landslides, 13, 1479–1491, https://doi.org/10.1007/s10346-015-0584-3, 2016. 
Anderson, M. B.: Metropolitan areas and disaster vulnerability: a consideration for developing countries, in: Environmental Management and Urban Vulnerability, edited by: Kreimer, A. and Munasinghe, M., World Bank discussion paper #18, World Bank, Washington DC, 1992. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Landslides are a hazard in terrestrial environments with slopes. This paper presents global analysis on patterns of fatal landsliding between 2004 and 2016, using a database collated from media reporting. The data show ~ 56 000 people were killed in 4862 landslide events. Active landslide years coincide with patterns of regional rainfall: most landslides were rainfall triggered. For the first time, analysis shows the number of landslides triggered by human activity increased with time.
Altmetrics
Final-revised paper
Preprint