Articles | Volume 23, issue 7
https://doi.org/10.5194/nhess-23-2547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-2547-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria
previously published under the name Simon Kainz
Thomas Wagner
Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria
Karl Krainer
Department of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
Michael Avian
Department of Climate Impact Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Marc Olefs
Department of Climate Impact Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Klaus Haslinger
Department of Climate Impact Research, GeoSphere Austria, Hohe Warte 38, 1190 Vienna, Austria
Gerfried Winkler
Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, Heinrichstrasse 26, 8010 Graz, Austria
Related authors
No articles found.
Alice Crespi, Katharina Enigl, Sebastian Lehner, Klaus Haslinger, and Massimiliano Pittore
EGUsphere, https://doi.org/10.5194/egusphere-2025-3686, https://doi.org/10.5194/egusphere-2025-3686, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Extreme precipitation poses a risk for the Alpine region as it can trigger floods, debris flows, landslides and rockfalls, which can have severe consequences for people and their activities. This study investigates how past precipitation extremes in a transboundary Alpine area can be detected, especially those corresponding with hazard occurrences. The findings can inform risk managers and support the methodological choices for the development of effective early warming systems.
Klaus Haslinger, Wolfgang Schöner, Jakob Abermann, Gregor Laaha, Konrad Andre, Marc Olefs, and Roland Koch
Nat. Hazards Earth Syst. Sci., 23, 2749–2768, https://doi.org/10.5194/nhess-23-2749-2023, https://doi.org/10.5194/nhess-23-2749-2023, 2023
Short summary
Short summary
Future changes of surface water availability in Austria are investigated. Alterations of the climatic water balance and its components are analysed along different levels of elevation. Results indicate in general wetter conditions with particular shifts in timing of the snow melt season. On the contrary, an increasing risk for summer droughts is apparent due to increasing year-to-year variability and decreasing snow melt under future climate conditions.
Hans Lievens, Isis Brangers, Hans-Peter Marshall, Tobias Jonas, Marc Olefs, and Gabriëlle De Lannoy
The Cryosphere, 16, 159–177, https://doi.org/10.5194/tc-16-159-2022, https://doi.org/10.5194/tc-16-159-2022, 2022
Short summary
Short summary
Snow depth observations at high spatial resolution from the Sentinel-1 satellite mission are presented over the European Alps. The novel observations can improve our knowledge of seasonal snow mass in areas with complex topography, where satellite-based estimates are currently lacking, and benefit a number of applications including water resource management, flood forecasting, and numerical weather prediction.
Ruth Stephan, Mathilde Erfurt, Stefano Terzi, Maja Žun, Boštjan Kristan, Klaus Haslinger, and Kerstin Stahl
Nat. Hazards Earth Syst. Sci., 21, 2485–2501, https://doi.org/10.5194/nhess-21-2485-2021, https://doi.org/10.5194/nhess-21-2485-2021, 2021
Short summary
Short summary
The Alpine Drought Impact report Inventory (EDIIALPS) archives drought impact reports across the European Alpine region with an increasing number of impacts over time. The most affected sectors are agriculture and livestock farming and public water supply, for which management strategies are essential for future climate regimes. We show spatial heterogeneity and seasonal differences between the impacted sectors and between impacts triggered by soil moisture drought and hydrological drought.
Cited articles
Adler, C., Wester, P., Bhatt, I., Huggel, C., Insarov, G. E., Morecroft, M. D., Muccione, V., and Prakash, A.: Cross-Chapter Paper 5: Mountains, in: Climate Change 2022: Impacts, Adaptation, and Vulnerability, Intergovernmental Panel on Climate Change, Cambridge University Press, https://doi.org/10.1017/9781009325844.022, 2022. a
Arenson, L., Hoelzle, M., and Springman, S.: Borehole deformation measurements and internal structure of some rock glaciers in Switzerland, Permafrost Periglac., 13, 117–135, https://doi.org/10.1002/ppp.414, 2002. a
Arenson, L. U. and Springman, S. M.: Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0 ∘C, Can. Geotech. J., 42, 431–442, https://doi.org/10.1139/T04-109, 2005. a
Arnold, N. S., Willis, I. C., Sharp, M. J., Richards, K. S., and Lawson, W. J.: A distributed surface energy-balance model for a small valley glacier. I. Development and testing for Haut Glacier d'Arolla, Valais, Switzerland,
J. Glaciol., 42, 77–89, https://doi.org/10.3189/S0022143000030549, 1996. a
Avian, M., Kaufmann, V., and Lieb, G. K.: Recent and Holocene dynamics of a rock glacier system: The example of Langtalkar (Central Alps, Austria), Norsk
Geogr. Tidsskr., 59, 149–156,
https://doi.org/10.1080/00291950510020637, 2007. a
Avian, M., Kellerer-Pirklbauer, A., and Bauer, A.: LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008, Nat. Hazards Earth Syst. Sci., 9, 1087–1094, https://doi.org/10.5194/nhess-9-1087-2009, 2009. a
Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018. a
Bodin, X., Krysiecki, J.-M., Schoeneich, P., Le Roux, O., Lorier, L.,
Echelard, T., Peyron, M., and Walpersdorf, A.: The 2006 Collapse of the
Bérard Rock Glacier (Southern French Alps), Permafrost Periglac., 28, 209–223, https://doi.org/10.1002/ppp.1887, 2017. a
Boeckli, L., Brenning, A., Gruber, A., and Noetzli, J.: Alpine permafrost index map, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.784450, 2012a. a, b, c
Boeckli, L., Brenning, A., Gruber, S., and Noetzli, J.: Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics, The Cryosphere, 6, 807–820, https://doi.org/10.5194/tc-6-807-2012, 2012b. a
Brock, B. W., Willis, I. C., Sharp, M. J., and Arnold, N. S.: Modelling seasonal and spatial variations in the surface energy balance of Haut Glacier
d'Arolla, Switzerland, Ann. Glaciol., 31, 53–62,
https://doi.org/10.3189/172756400781820183, 2000. a
Brock, B. W., Willis, I. C., and Sharp, M. J.: Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d'Arolla, Switzerland, J. Glaciol., 52, 281–297,
https://doi.org/10.3189/172756506781828746, 2006. a, b
Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D., and Guzzetti, F.: Rainfall thresholds for the possible occurrence of landslides in Italy, Nat. Hazards Earth Syst. Sci., 10, 447–458, https://doi.org/10.5194/nhess-10-447-2010, 2010. a
Brutsaert, W.: Hydrology: An Introduction, Cambridge University Press,
Cambridge, https://doi.org/10.1017/CBO9780511808470, 2005. a
Buchli, T., Merz, K., Zhou, X., Kinzelbach, W., and Springman, S. M.:
Characterization and Monitoring of the Furggwanghorn Rock Glacier, Turtmann
Valley, Switzerland: Results from 2010 to 2012, Vadose Zone J., 12, 1–15,
https://doi.org/10.2136/vzj2012.0067, 2013. a, b
Buchli, T., Kos, A., Limpach, P., Merz, K., Zhou, X., and Springman, S. M.:
Kinematic investigations on the Furggwanghorn Rock Glacier, Switzerland,
Permafrost Periglac., 29, 3–20, https://doi.org/10.1002/ppp.1968, 2018. a
Burger, K. C., Degenhardt, J. J., and Giardino, J. R.: Engineering
geomorphology of rock glaciers, Geomorphology, 31, 93–132,
https://doi.org/10.1016/S0169-555X(99)00074-4, 1999. a
Chowdhury, R., Bhattacharya, G., and Flentje, P.: Geotechnical slope analysis, CRC Press, Boca Raton, ISBN 9780415469746, 2010. a
Cicoira, A., Beutel, J., Faillettaz, J., and Vieli, A.: Water controls the
seasonal rhythm of rock glacier flow, Earth Planet. Sc. Lett.,
528, 115844, https://doi.org/10.1016/j.epsl.2019.115844, 2019. a
Clague, J. J. and Evans, S. G.: Formation and failure of natural dams in the
Canadian Cordillera, Geol. Surv. of Can., Ottawa, Ont., Bulletin 464, ISBN 0-660-15496-X, 1994. a
Clague, J. J. and O'Connor, J. E.: Glacier-Related Outburst Floods, in: Snow
and Ice-Related Hazards, Risks, and Disasters, edited by: Haeberli, W.,
Whiteman, C., and Shroder Jr., J. F., Elsevier, Amsterdam, 487–519, ISBN 9780123948496, 2015. a
Clarke, G. K. C.: Glacier Outburst Floods From “Hazard Lake”, Yukon
Territory, and the Problem of Flood Magnitude Prediction, J.
Glaciol., 28, 3–21, https://doi.org/10.3189/S0022143000011746, 1982. a
Clarke, G. K. C.: Hydraulics of subglacial outburst floods: New insights from
the Spring–Hutter formulation, J. Glaciol., 49, 299–313,
https://doi.org/10.3189/172756503781830728, 2003. a
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015a. a
Crameri, F.: Scientific colour maps: perceptually uniform and colour-vision
deficiency friendly, Zenodo [code], https://doi.org/10.5281/zenodo.1243862, 2018. a
Crozier, M. J.: Deciphering the effect of climate change on landslide activity: A review, Geomorphology, 124, 260–267, https://doi.org/10.1016/j.geomorph.2010.04.009, 2010. a, b
Delaloye, R., Morard, S., Barboux, C., Abbet, D., Gruber, V., Riedo, M., and
Gachet, S.: Rapidly moving rock glaciers in Mattertal, in: Mattertal – ein
Tal in Bewegung, edited by: Graf, C., Eidgenössische
Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Birmensdorf, 21–31, ISBN 9783905621532, 2013. a, b
Deline, P., Gruber, S., Delaloye, R., Fischer, L., Geertsema, M., Giardino, M., Hasler, A., Kirkbride, M., Krautblatter, M., Magnin, F., McColl, S., Ravanel, L., and Schoeneich, P.: Ice Loss and Slope Stability in High-Mountain Regions, in: Snow and Ice-Related Hazards, Risks, and Disasters, edited by: Haeberli, W., Whiteman, C., and Shroder Jr., J. F., Elsevier, Amsterdam, 521–561, ISBN 9780123948496, 2015. a, b
Dowling, C. A. and Santi, P. M.: Debris flows and their toll on human life: A global analysis of debris-flow fatalities from 1950 to 2011, Nat. Hazards,
71, 203–227, https://doi.org/10.1007/s11069-013-0907-4, 2014. a
Ermini, L. and Casagli, N.: Prediction of the behaviour of landslide dams using a geomorphological dimensionless index, Earth Surf. Proc. Land., 28, 31–47, https://doi.org/10.1002/esp.424, 2003. a
Escher-Vetter, H.: Energy Balance Calculations for the Ablation Period 1982 at Vernagtferner, Oetztal Alps, Ann. Glaciol., 6, 158–160, 1985. a
Evans, S. G. and Delaney, K. B.: Catastrophic Mass Flows in the Mountain Glacial Environment, in: Snow and Ice-Related Hazards, Risks, and Disasters,
edited by: Haeberli, W., Whiteman, C., and Shroder Jr., J. F.,
Elsevier, Amsterdam, 563–606, ISBN 9780123948496, 2015. a
Folk, R. L. and Ward, W. C.: Brazos River bar [Texas]; a study in the
significance of grain size parameters, J. Sediment. Res., 27,
3–26, https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D, 1957. a
Fox-Kemper, B., Hewitt, H. T., Xiao, C., AÐalgeirsdóttir, G.,
Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E.,
Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L.,
Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea
Level Change, in: Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V.,
Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N.,
Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E.,
Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu,
R., and Zhou, B., Cambridge University Press, https://doi.org/10.1017/9781009157896.011, 2021. a
Freeman, T. G.: Calculating catchment area with divergent flow based on a
regular grid, Comput. Geosci., 17, 413–422, 1991. a
Gallina, V., Torresan, S., Critto, A., Sperotto, A., Glade, T., and Marcomini, A.: A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment, J. Environ. Manage., 168, 123–132, https://doi.org/10.1016/j.jenvman.2015.11.011, 2016. a, b
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate,
Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011,
2016. a, b
Geosphere Austria: Spatiotemporal Reanalysis Dataset for Climate in Austria (SPARTACUS) v2.1, Geosphere Austria Data Hub [data set], https://data.hub.zamg.ac.at/dataset/spartacus-v2-1d-1km (last access: 28 June 2022), 2020a. a
Geosphere Austria: Integrated Nowcasting through Comprehensive Analysis Dataset (INCA), Geosphere Austria Data Hub [data set], https://data.hub.zamg.ac.at/dataset/inca-v1-1h-1km (last access: 28 June 2022), 2020b. a
Glade, T. and Crozier, M. J.: The Nature of Landslide Hazard Impact, in:
Landslide Hazard and Risk, edited by: Glade, T., Anderson, M., and Crozier,
M. J., John Wiley & Sons, Chichester, 43–74, ISBN 9780471486633, 2005. a
Greuell, W. and Oerlemans, J.: Energy Balance Calculations on and near Hintereisferner (Austria) and an Estimate of the Effect of Greenhouse Warming
on Ablation, in: Glacier Fluctuations and Climatic Change, edited by:
Oerlemans, J., Glaciology and Quaternary Geology, Springer,
Dordrecht, 305–323, ISBN 9780792301103, 1989. a
Greuell, W., van den Broeke, M., Knap, W., Reijmer, C., Smeets, P., and Struijk, I.: PASTEX (PASTerze EXperiment): Field report on a glacio-meteorological experiment on the Pasterze (Austria), Institute for arine and Atmospheric Research, Utrecht University, Amsterdam, the Netherlands and Faculty of Earth Sciences, Vrije Universiteit, Amsterdam, the Netherlands, https://www.projects.science.uu.nl/iceclimate/documents/Pasterze_1994.pdf (last access: 28 June 2022), 1995. a
Greuell, W., Knap, W. H., and Smeets, P. C.: Elevational changes in meteorological variables along a midlatitude glacier during summer, J. Geophys. Res., 102, 25941–25954, https://doi.org/10.1029/97JD02083, 1997. a, b, c
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rainfall thresholds for the initiation of landslides in central and southern Europe, Meteorol. Atmos. Phys., 98, 239–267, https://doi.org/10.1007/s00703-007-0262-7, 2007. a
Haeberli, W.: Frequency and Characteristics of Glacier Floods in the Swiss
Alps, Ann. Glaciol., 4, 85–90, https://doi.org/10.3189/S0260305500005280, 1983. a
Haeberli, W. and Vonder Mühll, D.: On the characteristics and possible
origins of ice in rock glacier permafrost, Z.
Geomorphol., Supplementary Issues, 104, 43–57, 1996. a
Haeberli, W. and Whiteman, C.: Snow and Ice-Related Hazards, Risks, and Disasters: A General Framework, in: Snow and Ice-Related Hazards, Risks, and Disasters, edited by: Haeberli, W., Whiteman, C., and Shroder Jr., J. F., Elsevier, Amsterdam, 1–34, ISBN 9780123948496, 2015. a
Haeberli, W., Kääb, A., Vonder Mühll, D., and Teysseire, P.:
Prevention of outburst floods from periglacial lakes at Grubengletscher,
Valais, Swiss Alps, J. Glaciol., 47, 111–122, 2001. a
Haiden, T., Kann, A., Wittmann, C., Pistotnik, G., Bica, B., and Gruber, C.:
The Integrated Nowcasting through Comprehensive Analysis (INCA) System and
Its Validation over the Eastern Alpine Region, Weather Forecast., 26,
166–183, https://doi.org/10.1175/2010WAF2222451.1, 2011. a, b, c
Haque, U., Blum, P., da Silva, P. F., Andersen, P., Pilz, J., Chalov, S. R., Malet, J.-P., Auflič, M. J., Andres, N., Poyiadji, E., Lamas, P. C., Zhang, W., Peshevski, I., Pétursson, H. G., Kurt, T., Dobrev, N.,
García-Davalillo, J. C., Halkia, M., Ferri, S., Gaprindashvili, G.,
Engström, J., and Keellings, D.: Fatal landslides in Europe, Landslides, 13, 1545–1554, https://doi.org/10.1007/s10346-016-0689-3, 2016. a
Haque, U., da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu, J.-H., and Glass, G. E.: The human cost of global warming: Deadly landslides
and their triggers (1995–2014), Sci. Total Environ., 682,
673–684, https://doi.org/10.1016/j.scitotenv.2019.03.415, 2019. a
Hiebl, J. and Frei, C.: Daily temperature grids for Austria since 1961 – concept, creation and applicability, Theor. Appl. Climatol., 124, 161–178, https://doi.org/10.1007/s00704-015-1411-4, 2016. a, b
Hiebl, J. and Frei, C.: Daily precipitation grids for Austria since 1961 – development and evaluation of a spatial dataset for hydroclimatic monitoring and modelling, Theor. Appl. Climatol., 132, 327–345,
https://doi.org/10.1007/s00704-017-2093-x, 2018. a, b
Hirsch, R. M. and Slack, J. R.: A Nonparametric Trend Test for Seasonal Data
With Serial Dependence, Water Resour. Res., 20, 727–732,
https://doi.org/10.1029/WR020i006p00727, 1984. a
Hirsch, R. M., Slack, J. R., and Smith, R. A.: Techniques of Trend Analysis for Monthly Water Quality Data, Water Resour. Res., 18, 107–121, 1982. a
Hock, R., Rasul, G., Adler, C., Cáceres, B., Gruber, S., Hirabayashi, Y., Jackson, M., Kääb, A., Kang, S., Kutuzov, S., Milner, A., Molau, U.,
Morin, S., Orlove, B., and Steltzer, H.: High Mountain Areas, in: IPCC
Special Report on the Ocean and Cryosphere in a Changing Climate, Intergovernmental Panel on Climate Change, 131–202, https://doi.org/10.1017/9781009157964.004, 2019. a, b, c, d
Hoinkes, G. and Thöni, M.: Evolution of the Ötztal-Stubai, Scarl-Campo and Ulten Basement Units, in: Pre-Mesozoic Geology in the Alps, edited by: Raumer, J. F. and Neubauer, F., Springer Berlin Heidelberg,
Berlin, Heidelberg, 485–494, ISBN 9783642846427, 1993. a
Hübl, J. and Beck, M.: Ereignisdokumentation 2019, Federal Ministry of Agriculture, Regions and Tourism, Vienna, Austria, IAN Report 209, 2020. a
Huggel, C., Haeberli, W., Kääb, A., Bieri, D., and Richardson, S.: An
assessment procedure for glacial hazards in the Swiss Alps, Can.
Geotech. J., 41, 1068–1083, https://doi.org/10.1139/t04-053, 2004. a
Hungr, O.: Classification and terminology, in: Debris-flow Hazards and Related Phenomena, edited by: Jakob, M. and Hungr, O., Springer-Verlag
Berlin Heidelberg, 9–24, ISBN 3540207260, 2005. a
Hydrological Service of Tyrol: Hydrological summary, Government of the province of Tyrol, Innsbruck, Austria,
https://www.tirol.gv.at/umwelt/wasserwirtschaft/wasserkreislauf/hydrologische-uebersichten/ (last access: 28 June 2022), 2019. a
Ikeda, A., Matsuoka, N., and Kääb, A.: Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An effect of liquid water, J. Geophys. Res., 113, F01021, https://doi.org/10.1029/2007JF000859, 2008. a
International Organization for Standardization: ISO 14688-1:2017 Geotechnical investigation and testing – Identification and classification of soil – Part 1: Identification and description, https://doi.org/10.31030/2748424, 2017. a
Isotta, F. A., Frei, C., Weilguni, V., Perčec Tadić, M., Lassègues, P., Rudolf, B., Pavan, V., Cacciamani, C., Antolini, G., Ratto, S. M., Munari, M., Micheletti, S., Bonati, V., Lussana, C., Ronchi, C., Panettieri, E., Marigo, G., and Vertačnik, G.: The climate of daily precipitation in the Alps: Development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data, Int. J. Climatol., 34, 1657–1675, https://doi.org/10.1002/joc.3794, 2014. a
Iverson, R. M.: Debris-flow mechanics, in: Debris-flow Hazards and Related Phenomena, edited by: Jakob, M. and Hungr, O., Springer-Verlag
Berlin Heidelberg, 105–134, ISBN 3540207260, 2005. a
Iverson, R. M. and LaHusen, R. G.: Dynamic Pore-Pressure Fluctuations in
Rapidly Shearing Granular Materials, Science, 246, 796–799, 1989. a
Iverson, R. M. and Major, J. J.: Groundwater Seepage Vectors and the Potential for Hillslope Failure and Debris Flow Mobilization, Water Resour. Res., 22, 1543–1548, https://doi.org/10.1029/WR022i011p01543, 1986. a
Iverson, R. M., Reid, M. E., and LaHusen, R. G.: Debris-flow mobilization from landslides, Annu. Rev. Earth Pl. Sc., 25, 85–138,
https://doi.org/10.1146/annurev.earth.25.1.85, 1997. a, b, c
Johnson, K. A. and Sitar, N.: Hydrologic conditions leading to debris-flow
initiation, Can. Geotech. J., 27, 789–801, https://doi.org/10.1139/t90-092, 1990. a
Johnson, P. G.: Micro-relief on a Rock Glacier, Dalton Range, Yukon, Canada,
Permafrost Periglac., 3, 41–47, 1992. a
Jones, D. B., Harrison, S., Anderson, K., and Whalley, W. B.: Rock glaciers and mountain hydrology: A review, Earth-Sci. Rev., 193, 66–90,
https://doi.org/10.1016/j.earscirev.2019.04.001, 2019. a
Kainz, S.: Characterizing Groundwater Flow Dynamics and Storage Capacity in an Active Rock Glacier, Springer Fachmedien, Wiesbaden,
https://doi.org/10.1007/978-3-658-37073-2, 2022. a
Kappes, M. S., Keiler, M., von Elverfeldt, K., and Glade, T.: Challenges of
analyzing multi-hazard risk: A review, Nat. Hazards, 64, 1925–1958,
https://doi.org/10.1007/s11069-012-0294-2, 2012. a, b
Kerschner, H.: Zeugen der Klimageschichte im oberen Radurschltal: Alte
Gletscherstände und Blockgletscher in der Umgebung des
Hohenzollernhauses, Zeitschrift des Deutschen und Österreichischen
Alpenvereins, 107, 23–27, 1982. a
Klein Tank, A. M. G., Zwiers, F. W., and Zhang, X.: Guidelines on analysis of
extremes in a changing climate in support of informed decisions for
adaptation, no. 72 in World Climate Data and Monitoring Programme (WCDMP),
World Meteorological Organization (WMO), Geneva, https://library.wmo.int/index.php?lvl=notice_display&id=138 (last access: 12 July 2023), 2009. a
Klok, E. J. and Oerlemans, J.: Model study of the spatial distribution of the
energy and mass balance of Morteratschgletscher, Switzerland, J. Glaciol., 48, 505–518, https://doi.org/10.3189/172756502781831133, 2002. a
Kofler, C., Mair, V., Gruber, S., Todisco, M. C., Nettleton, I., Steger, S., Zebisch, M., Schneiderbauer, S., and Comiti, F.: When do rock glacier fronts
fail? Insights from two case studies in South Tyrol (Italian Alps), Earth
Surf. Proc. Land., 46, 1311–1327, https://doi.org/10.1002/esp.5099, 2021. a, b, c, d, e, f
Krainer, K. and Mostler, W.: Hydrology of Active Rock Glaciers: Examples from
the Austrian Alps, Arct. Antarct. Alp. Res., 34, 142–149,
https://doi.org/10.1080/15230430.2002.12003478, 2002. a, b
Krainer, K., Lang, K., and Hausmann, H.: Active Rock Glaciers at Croda Rossa/Hohe Gaisl, Eastern Dolomites (Alto Adige/South Tyrol, Northern Italy),
Geogr. Fis. Dinam. Quat., 33, 25–36, http://hdl.handle.net/20.500.12708/167230, 2010. a
Krainer, K., Bressan, D., Dietre, B., Haas, J. N., Hajdas, I., Lang, K., Mair, V., Nickus, U., Reidl, D., Thies, H., and Tonidandel, D.: A 10 300-year-old permafrost core from the active rock glacier Lazaun, southern Ötztal Alps (South Tyrol, northern Italy), Quaternary Res., 83, 324–335, https://doi.org/10.1016/j.yqres.2014.12.005, 2015. a
Kummert, M. and Delaloye, R.: Mapping and quantifying sediment transfer between the front of rapidly moving rock glaciers and torrential gullies,
Geomorphology, 309, 60–76, https://doi.org/10.1016/j.geomorph.2018.02.021, 2018. a, b, c
Kummert, M., Delaloye, R., and Braillard, L.: Erosion and sediment transfer processes at the front of rapidly moving rock glaciers: Systematic observations with automatic cameras in the western Swiss Alps, Permafrost Periglac., 29, 21–33, https://doi.org/10.1002/ppp.1960, 2018. a, b, c
Landa, M., Neteler, M., Metz, M., Petrasova, A., glynnc, Hamish, B., Petras, V., huhabla, Cho, H., Delucchi, L., Pietro, Barton, M., Zigo, T., Chemin, Y., Nartišs, M., ostepok, Kudrnovsky, H., Lennert, M., Larsson, N., Blumentrath, S., Kladivova, L., Kyngesburye, W., aghisla, Andrea, V., Jacobson, D., Ovsienko, D., Di Leo, M., Mitasova, H., Tawalika, C., and Haedrich, C.: GRASS GIS 8.0.0, Zenodo [code], https://doi.org/10.5281/zenodo.5913049, 2022. a, b
Lugon, R. and Stoffel, M.: Rock-glacier dynamics and magnitude–frequency
relations of debris flows in a high-elevation watershed: Ritigraben, Swiss
Alps, Global Planet. Change, 73, 202–210,
https://doi.org/10.1016/j.gloplacha.2010.06.004, 2010. a, b, c
Marcer, M., Serrano, C., Brenning, A., Bodin, X., Goetz, J., and Schoeneich, P.: Evaluating the destabilization susceptibility of active rock glaciers in the French Alps, The Cryosphere, 13, 141–155, https://doi.org/10.5194/tc-13-141-2019, 2019. a, b, c, d
Marcer, M., Ringsø Nielsen, S., Ribeyre, C., Kummert, M., Duvillard,
P.-A., Schoeneich, P., Bodin, X., and Genuite, K.: Investigating the slope
failures at the Lou rock glacier front, French Alps, Permafrost Periglac., 31, 15–30, https://doi.org/10.1002/ppp.2035, 2020. a, b, c, d
Marcer, M., Cicoira, A., Cusicanqui, D., Bodin, X., Echelard, T., Obregon, R., and Schoeneich, P.: Rock glaciers throughout the French Alps accelerated and destabilised since 1990 as air temperatures increased, Communications Earth & Environment, 2, 383, https://doi.org/10.1038/s43247-021-00150-6, 2021. a
Marra, F., Nikolopoulos, E. I., Creutin, J. D., and Borga, M.: Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship, J. Hydrol.,
541, 246–255, https://doi.org/10.1016/j.jhydrol.2015.10.010, 2016. a, b, c, d
Mölg, N., Huggel, C., Herold, T., Storck, F., Allen, S., Haeberli, W., Schaub, Y., and Odermatt, D.: Inventory and evolution of glacial lakes since
the Little Ice Age: Lessons from the case of Switzerland, Earth Surf.
Proc. Land., 46, 2551–2564, https://doi.org/10.1002/esp.5193, 2021. a
Moser, M.: GEOFAST 1 : 50 000. Zusammenstellung ausgewählter Archivunterlagen der Geologischen Bundesanstalt: Blatt 172 Weißkugel, GeoSphere Austria, Vienna, Austria, ID 900028483, 2012. a
Nikolopoulos, E. I., Borga, M., Marra, F., Crema, S., and Marchi, L.: Debris flows in the eastern Italian Alps: seasonality and atmospheric circulation patterns, Nat. Hazards Earth Syst. Sci., 15, 647–656, https://doi.org/10.5194/nhess-15-647-2015, 2015. a, b, c, d
Oerlemans, J.: Analysis of a 3 year meteorological record from the ablation
zone of Morteratschgletscher, Switzerland: Energy and mass balance, J. Glaciol., 46, 571–579, https://doi.org/10.3189/172756500781832657, 2000. a, b, c
Oerlemans, J. and Klok, E. J.: Energy Balance of a Glacier Surface: Analysis of Automatic Weather Station Data from the Morteratschgletscher, Switzerland,
Arct. Antarct. Alp. Res., 34, 477–485,
https://doi.org/10.1080/15230430.2002.12003519, 2002. a
Oerlemans, J., Giesen, R. H., and van den Broeke, M. R.: Retreating alpine
glaciers: Increased melt rates due to accumulation of dust (Vadret da
Morteratsch, Switzerland), J. Glaciol., 55, 729–736,
https://doi.org/10.3189/002214309789470969, 2009. a
Olefs, M., Schöner, W., Suklitsch, M., Wittmann, C., Niedermoser, B., Neururer, A., and Wurzer, A.: SNOWGRID – A new operational snow cover model
in Austria, in: Proceedings of International Snow Science Workshop,
Grenoble-Chamonix, France, 7–11 October 2013: a merging of theory and practice, edited by: Bouvet, F. N., Ruand, Y., and Lambert, R., ANENA, IRSTEA, Météo-France, Paris, France, 38–45, https://hal.inrae.fr/hal-02599446/document, 2013. a, b, c
Olefs, M., Baumgartner, D. J., Obleitner, F., Bichler, C., Foelsche, U., Pietsch, H., Rieder, H. E., Weihs, P., Geyer, F., Haiden, T., and Schöner, W.: The Austrian radiation monitoring network ARAD – best practice and added value, Atmos. Meas. Tech., 9, 1513–1531, https://doi.org/10.5194/amt-9-1513-2016, 2016. a
Olefs, M., Koch, R., Schöner, W., and Marke, T.: Changes in Snow Depth,
Snow Cover Duration, and Potential Snowmaking Conditions in Austria,
1961–2020 – A Model Based Approach, Atmosphere, 11, 1330,
https://doi.org/10.3390/atmos11121330, 2020. a, b
Pack, R. T.: Application of airborne and spaceborne remote sensing methods, in: Debris-flow Hazards and Related Phenomena, edited by: Jakob, M. and Hungr, O., 275–290, Springer-Verlag Berlin Heidelberg, ISBN 3540207260, 2005. a
Patton, A. I., Rathburn, S. L., and Capps, D. M.: Landslide response to climate change in permafrost regions, Geomorphology, 340, 116–128,
https://doi.org/10.1016/j.geomorph.2019.04.029, 2019. a, b, c, d
Peruccacci, S., Brunetti, M. T., Luciani, S., Vennari, C., and Guzzetti, F.:
Lithological and seasonal control on rainfall thresholds for the possible
initiation of landslides in central Italy, Geomorphology, 139–140, 79–90,
https://doi.org/10.1016/j.geomorph.2011.10.005, 2012. a
Petley, D.: Global patterns of loss of life from landslides, Geology, 40,
927–930, https://doi.org/10.1130/G33217.1, 2012. a
Ranasinghe, R., Ruane, A. C., Vautard, R., Arnell, N., Coppola, E., Cruz, F. A., Dessai, S., Islam, A. S., Rahimi, M., Ruiz Carrascal, D., Sillmann,
J., Sylla, M. B., Tebaldi, C., Wang, W., and Zaaboul, R.: Climate Change
Information for Regional Impact and for Risk Assessment, in: Climate Change
2021: The Physical Science Basis. Contribution of Working Group I to the
Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L.,
Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I.,
Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K.,
Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge
University Press, https://doi.org/10.1017/9781009157896.014, 2021. a
Ribis, M.: Geologisch-hydrogeologische und hydrochemische Untersuchungen in
Permafrostbereichen der Ötztaler Alpen (Tirol, Österreich),
Dissertation, Leopold-Franzens-Universität, Innsbruck, ID AC11365577, 2017. a
Roer, I., Haeberli, W., Avian, M., Kaufmann, V., Delaloye, R., Lambiel, C., and Kääb, A.: Observations and Considerations on Destabilizing Active Rock Glaciers in the European Alps, in: Proceedings of the 9th International Conference on Permafrost, Fairbanks, Alaska, 29 June–2 July 2008, edited by: Kane, D. L. and Hinkel, K. M., University of Alaska Fairbanks, Fairbanks, 1505–1510, ISBN 9780980017922, 2008. a
Sassa, K. and Wang, G. K.: Mechanism of landslide-triggered debris flows: Liquefaction phenomena due to the undrained loading of torrent deposits, in: Debris-flow Hazards and Related Phenomena, edited by: Jakob, M. and Hungr, O., Springer-Verlag Berlin Heidelberg, 81–104, ISBN 3540207260, 2005. a
Schaub, Y.: Outburst floods from high-mountain lakes: risk analysis of cascading processes under present and future conditions, Dissertation, Universität Zürich, Zürich, https://www.zora.uzh.ch/id/eprint/120918/ (last access: 28 June 2022), 2015. a
Schauwecker, S., Gascón, E., Park, S., Ruiz-Villanueva, V., Schwarb, M., Sempere-Torres, D., Stoffel, M., Vitolo, C., and Rohrer, M.: Anticipating cascading effects of extreme precipitation with pathway schemes – Three case
studies from Europe, Environ. Int., 127, 291–304,
https://doi.org/10.1016/j.envint.2019.02.072, 2019. a
Schmid, S. M., Fügenschuh, B., Kissling, E., and Schuster, R.: Tectonic map and overall architecture of the Alpine orogen, Eclogae Geol. Helv., 97, 93–117, 2004. a
Sentinel Hub: Modified Sentinel-2 multi-spectral satellite data, produced from European Space Agency remote sensing data provided by Copernicus, images processed by Sentinel Hub, Sinergise Laboratory for geographical information systems Ltd., Ljubljana, Slovenia, https://www.sentinel-hub.com/ (last access: 28 June 2022), 2020. a, b, c, d
Stoffel, M. and Huggel, C.: Effects of climate change on mass movements in
mountain environments, Prog. Phys. Geogr., 36, 421–439,
https://doi.org/10.1177/0309133312441010, 2012. a
Tenthorey, G.: Perennial névés and the hydrology of rock glaciers,
Permafrost Periglac., 3, 247–252, https://doi.org/10.1002/ppp.3430030313, 1992. a
Turner, A. K.: Colluvium and Talus, in: Landslides, edited by Turner, A. K. and Schuster, R. L., Transportation Research Board Special Report,
National Academy of Sciences, Washington, 525–554, ISBN 0309061512, 1996. a
van de Wal, R. S. W., Oerlemans, J., and van der Hage, J. C.: A study of ablation variations on the tongue of Hintereisferner, Austrian Alps, J. Glaciology, 38, 319–324, https://doi.org/10.3189/S0022143000002203, 1992. a
Wagner, T., Pleschberger, R., Kainz, S., Ribis, M., Kellerer-Pirklbauer, A., Krainer, K., Philippitsch, R., and Winkler, G.: The first consistent inventory of rock glaciers and their hydrological catchments of the Austrian
Alps, Austrian J. Earth Sc., 113, 1–23,
https://doi.org/10.17738/ajes.2020.0001, 2020a. a
Wagner, T., Ribis, M., Kellerer-Pirklbauer, A., Krainer, K., and Winkler, G.: The Austrian rock glacier inventory RGI_1 and the related rock glacier catchment inventory RGCI_1 in ArcGis (shapefile) format, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.921629, 2020b. a
Wagner, T., Kainz, S., Krainer, K., and Winkler, G.: Storage–discharge
characteristics of an active rock glacier catchment in the Innere
Ölgrube, Austrian Alps, Hydrol. Process., 35, e14210,
https://doi.org/10.1002/hyp.14210, 2021. a
Werder, M. A., Bauder, A., Funk, M., and Keusen, H.-R.: Hazard assessment investigations in connection with the formation of a lake on the tongue of Unterer Grindelwaldgletscher, Bernese Alps, Switzerland, Nat. Hazards Earth Syst. Sci., 10, 227–237, https://doi.org/10.5194/nhess-10-227-2010, 2010. a
Wieczorek, G. F. and Guzzetti, F.: A review of rainfall thresholds for
triggering landslides, in: Mediterranean Storms, edited by European
Geosciences Union, Editoriale Bios, Cosenza, Italy, 407–414, ISBN 9788877402967, 2000. a
Willis, I. C., Arnold, N. S., and Brock, B. W.: Effect of snowpack removal on
energy balance, melt and runoff in a small supraglacial catchment,
Hydrol. Process., 16, 2721–2749, https://doi.org/10.1002/hyp.1067, 2002. a
Winkler, G., Wagner, T., Krainer, K., Ribis, M., and Hergarten, S.: Hydrogeology of Rock Glaciers - Storage Capacity and Drainage Dynamics – An
Overview, in: Novel methods and results of landscape research in Europe,
Central Asia and Siberia, edited by: Sychev, V. G. and Mueller, L., FGBNU VNII agrochimii, Moskau, 329–334, 2018. a
Žebre, M., Colucci, R. R., Giorgi, F., Glasser, N. F., Racoviteanu,
A. E., and Del Gobbo, C.: 200 years of equilibrium-line altitude
variability across the European Alps (1901–2100), Clim. Dynam., 56,
1183–1201, https://doi.org/10.1007/s00382-020-05525-7, 2021. a
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front...
Altmetrics
Final-revised paper
Preprint