Articles | Volume 22, issue 7
https://doi.org/10.5194/nhess-22-2289-2022
https://doi.org/10.5194/nhess-22-2289-2022
Research article
 | 
13 Jul 2022
Research article |  | 13 Jul 2022

What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand

Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern

Related authors

Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023,https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Earthquake contributions to coastal cliff retreat
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, and Chris Massey
Earth Surf. Dynam., 11, 757–778, https://doi.org/10.5194/esurf-11-757-2023,https://doi.org/10.5194/esurf-11-757-2023, 2023
Short summary
The utility of earth science information in post-earthquake land-use decision-making: the 2010–2011 Canterbury earthquake sequence in Aotearoa New Zealand
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020,https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
Short communication: A semiautomated method for bulk fault slip analysis from topographic scarp profiles
Franklin D. Wolfe, Timothy A. Stahl, Pilar Villamor, and Biljana Lukovic
Earth Surf. Dynam., 8, 211–219, https://doi.org/10.5194/esurf-8-211-2020,https://doi.org/10.5194/esurf-8-211-2020, 2020
Short summary
Displacement mechanisms of slow-moving landslides in response to changes in porewater pressure and dynamic stress
Jonathan M. Carey, Chris I. Massey, Barbara Lyndsell, and David N. Petley
Earth Surf. Dynam., 7, 707–722, https://doi.org/10.5194/esurf-7-707-2019,https://doi.org/10.5194/esurf-7-707-2019, 2019
Short summary

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

AGS – Australian Geomechanics Society: Practice Note Guidelines for Landslide Risk Management, in: Australian Geomechanics, vol. 42, Australian Geomechanics Society, ISSN 0818-9110, 2007. 
Allen, S. and Huggel, C.: Extremely warm temperatures as a potential cause of recent high mountain rockfall, Global Planet. Change, 107, 59–69, https://doi.org/10.1016/j.gloplacha.2013.04.007, 2013. 
Allen, S. K., Schneider, D., and Owens, I. F.: First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps, Nat. Hazards Earth Syst. Sci., 9, 481–499, https://doi.org/10.5194/nhess-9-481-2009, 2009. 
Allen, S. K., Cox, I. S. C., and Owens, I. I. F.: Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts, Landslides, 33–48, https://doi.org/10.1007/s10346-010-0222-z, 2011. 
Bell, R. and Glade, T.: Quantitative risk analysis for landslides – Examples from Bíldudalur, NW-Iceland, Nat. Hazards Earth Syst. Sci., 4, 117–131, https://doi.org/10.5194/nhess-4-117-2004, 2004.  
Download
Short summary
This study calculates the fatality risk posed by landslides while visiting Franz Josef Glacier and Fox Glacier valleys, New Zealand, for nine different scenarios, where the variables of the risk equation were adjusted to determine the range in risk values and associated uncertainty. The results show that it is important to consider variable inputs that change through time, such as the increasing probability of an earthquake and the impact of climate change on landslide characteristics.
Altmetrics
Final-revised paper
Preprint