Articles | Volume 21, issue 7
https://doi.org/10.5194/nhess-21-2125-2021
https://doi.org/10.5194/nhess-21-2125-2021
Research article
 | 
13 Jul 2021
Research article |  | 13 Jul 2021

Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century

Xun Wang, Marco Otto, and Dieter Scherer

Related authors

A hybrid data-driven approach to analyze the drivers of lake level dynamics
Márk Somogyvári, Dieter Scherer, Frederik Bart, Ute Fehrenbach, Akpona Okujeni, and Tobias Krueger
EGUsphere, https://doi.org/10.5194/egusphere-2023-2111,https://doi.org/10.5194/egusphere-2023-2111, 2023
Short summary
The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017
Alexander Krug, Daniel Fenner, Hans-Guido Mücke, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 20, 3083–3097, https://doi.org/10.5194/nhess-20-3083-2020,https://doi.org/10.5194/nhess-20-3083-2020, 2020
Short summary
Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates
Dieter Scherer
Hydrol. Earth Syst. Sci., 24, 3835–3850, https://doi.org/10.5194/hess-24-3835-2020,https://doi.org/10.5194/hess-24-3835-2020, 2020
Short summary
Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau
Julia Curio and Dieter Scherer
Earth Syst. Dynam., 7, 767–782, https://doi.org/10.5194/esd-7-767-2016,https://doi.org/10.5194/esd-7-767-2016, 2016
Short summary
The role of building models in the evaluation of heat-related risks
Oliver Buchin, Britta Jänicke, Fred Meier, Dieter Scherer, and Felix Ziegler
Nat. Hazards Earth Syst. Sci., 16, 963–976, https://doi.org/10.5194/nhess-16-963-2016,https://doi.org/10.5194/nhess-16-963-2016, 2016
Short summary

Related subject area

Landslides and Debris Flows Hazards
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024,https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Space–time landslide hazard modeling via Ensemble Neural Networks
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024,https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024,https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024,https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024,https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary

Cited articles

Barbosa, N., Andreani, L., Gloaguen, R., and Ratschbacher, L.: Window-Based Morphometric Indices as Predictive Variables for Landslide Susceptibility Models, Remote Sens., 13, 451, https://doi.org/10.3390/rs13030451, 2021. a
Behling, R. and Roessner, S.: Multi-temporal landslide inventory for a study area in Southern Kyrgyzstan derived from RapidEye satellite time series data (2009–2013), V. 1.0. GFZ Data Services, Potsdam, Germany, https://doi.org/10.5880/GFZ.1.4.2020.001, 2020. a
Berti, M., Martina, M., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res.-Earth, 117, F04006, https://doi.org/10.1029/2012JF002367, 2012. a, b, c
Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes, Geophysical Res. Lett., 35, L06403, https://doi.org/10.1029/2007GL032011, 2008. a
Braun, A., Fernandez-Steeger, T., Havenith, H.-B., and Torgoev, A.: Landslide Susceptibility Mapping with Data Mining Methods – a Case Study from Maily-Say, Kyrgyzstan, in: Engineering Geology for Society and Territory – Volume 2, Springer, Cham, 995–998, 2015. a
Download
Short summary
We applied a high-resolution, gridded atmospheric data set combined with landslide inventories to investigate the atmospheric triggers, define triggering thresholds, and characterize the climatic disposition of landslides in Kyrgyzstan and Tajikistan. Our results indicate the crucial role of snowmelt in landslide triggering and prediction in Kyrgyzstan and Tajikistan, as well as the added value of climatic disposition derived from atmospheric triggering conditions.
Altmetrics
Final-revised paper
Preprint