Articles | Volume 21, issue 7
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, 2021
https://doi.org/10.5194/nhess-21-2125-2021
Nat. Hazards Earth Syst. Sci., 21, 2125–2144, 2021
https://doi.org/10.5194/nhess-21-2125-2021

Research article 13 Jul 2021

Research article | 13 Jul 2021

Atmospheric triggering conditions and climatic disposition of landslides in Kyrgyzstan and Tajikistan at the beginning of the 21st century

Xun Wang et al.

Related authors

The contribution of air temperature and ozone to mortality rates during hot weather episodes in eight German cities during the years 2000 and 2017
Alexander Krug, Daniel Fenner, Hans-Guido Mücke, and Dieter Scherer
Nat. Hazards Earth Syst. Sci., 20, 3083–3097, https://doi.org/10.5194/nhess-20-3083-2020,https://doi.org/10.5194/nhess-20-3083-2020, 2020
Short summary
Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates
Dieter Scherer
Hydrol. Earth Syst. Sci., 24, 3835–3850, https://doi.org/10.5194/hess-24-3835-2020,https://doi.org/10.5194/hess-24-3835-2020, 2020
Short summary
Seasonality and spatial variability of dynamic precipitation controls on the Tibetan Plateau
Julia Curio and Dieter Scherer
Earth Syst. Dynam., 7, 767–782, https://doi.org/10.5194/esd-7-767-2016,https://doi.org/10.5194/esd-7-767-2016, 2016
Short summary
The role of building models in the evaluation of heat-related risks
Oliver Buchin, Britta Jänicke, Fred Meier, Dieter Scherer, and Felix Ziegler
Nat. Hazards Earth Syst. Sci., 16, 963–976, https://doi.org/10.5194/nhess-16-963-2016,https://doi.org/10.5194/nhess-16-963-2016, 2016
Short summary
A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau
J. Curio, F. Maussion, and D. Scherer
Earth Syst. Dynam., 6, 109–124, https://doi.org/10.5194/esd-6-109-2015,https://doi.org/10.5194/esd-6-109-2015, 2015

Related subject area

Landslides and Debris Flows Hazards
Spatiotemporal clustering of flash floods in a changing climate (China, 1950–2015)
Nan Wang, Luigi Lombardo, Marj Tonini, Weiming Cheng, Liang Guo, and Junnan Xiong
Nat. Hazards Earth Syst. Sci., 21, 2109–2124, https://doi.org/10.5194/nhess-21-2109-2021,https://doi.org/10.5194/nhess-21-2109-2021, 2021
Short summary
Analysis of meteorological parameters triggering rainfall-induced landslide: a review of 70 years in Valtellina
Andrea Abbate, Monica Papini, and Laura Longoni
Nat. Hazards Earth Syst. Sci., 21, 2041–2058, https://doi.org/10.5194/nhess-21-2041-2021,https://doi.org/10.5194/nhess-21-2041-2021, 2021
Short summary
Landslide risk management analysis on expansive residential areas – case study of La Marina (Alicante, Spain)
Isidro Cantarino, Miguel Angel Carrion, Jose Sergio Palencia-Jimenez, and Víctor Martínez-Ibáñez
Nat. Hazards Earth Syst. Sci., 21, 1847–1866, https://doi.org/10.5194/nhess-21-1847-2021,https://doi.org/10.5194/nhess-21-1847-2021, 2021
Short summary
Uncertainty analysis of a rainfall threshold estimate for stony debris flow based on the backward dynamical approach
Marta Martinengo, Daniel Zugliani, and Giorgio Rosatti
Nat. Hazards Earth Syst. Sci., 21, 1769–1784, https://doi.org/10.5194/nhess-21-1769-2021,https://doi.org/10.5194/nhess-21-1769-2021, 2021
Short summary
Controls on the formation and size of potential landslide dams and dammed lakes in the Austrian Alps
Anne-Laure Argentin, Jörg Robl, Günther Prasicek, Stefan Hergarten, Daniel Hölbling, Lorena Abad, and Zahra Dabiri
Nat. Hazards Earth Syst. Sci., 21, 1615–1637, https://doi.org/10.5194/nhess-21-1615-2021,https://doi.org/10.5194/nhess-21-1615-2021, 2021
Short summary

Cited articles

Barbosa, N., Andreani, L., Gloaguen, R., and Ratschbacher, L.: Window-Based Morphometric Indices as Predictive Variables for Landslide Susceptibility Models, Remote Sens., 13, 451, https://doi.org/10.3390/rs13030451, 2021. a
Behling, R. and Roessner, S.: Multi-temporal landslide inventory for a study area in Southern Kyrgyzstan derived from RapidEye satellite time series data (2009–2013), V. 1.0. GFZ Data Services, Potsdam, Germany, https://doi.org/10.5880/GFZ.1.4.2020.001, 2020. a
Berti, M., Martina, M., Franceschini, S., Pignone, S., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res.-Earth, 117, F04006, https://doi.org/10.1029/2012JF002367, 2012. a, b, c
Bookhagen, B. and Strecker, M. R.: Orographic barriers, high-resolution TRMM rainfall, and relief variations along the eastern Andes, Geophysical Res. Lett., 35, L06403, https://doi.org/10.1029/2007GL032011, 2008. a
Braun, A., Fernandez-Steeger, T., Havenith, H.-B., and Torgoev, A.: Landslide Susceptibility Mapping with Data Mining Methods – a Case Study from Maily-Say, Kyrgyzstan, in: Engineering Geology for Society and Territory – Volume 2, Springer, Cham, 995–998, 2015. a
Download
Short summary
We applied a high-resolution, gridded atmospheric data set combined with landslide inventories to investigate the atmospheric triggers, define triggering thresholds, and characterize the climatic disposition of landslides in Kyrgyzstan and Tajikistan. Our results indicate the crucial role of snowmelt in landslide triggering and prediction in Kyrgyzstan and Tajikistan, as well as the added value of climatic disposition derived from atmospheric triggering conditions.
Altmetrics
Final-revised paper
Preprint