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Abstract. Landslide is a major natural hazard in Kyrgyzs-
tan and Tajikistan. Knowledge about atmospheric trigger-
ing conditions and climatic disposition of landslides in Kyr-
gyzstan and Tajikistan is limited even though this topic has
already been investigated thoroughly in other parts of the
world. In this study, the newly developed, high-resolution
High Asia Refined analysis version 2 (HAR v2) data set gen-
erated by dynamical downscaling was combined with histor-
ical landslide inventories to analyze the atmospheric condi-
tions that initialized landslides in Kyrgyzstan and Tajikistan.
The results indicate the crucial role of snowmelt in landslide-
triggering processes since it contributes to the initialization
of 40 % of landslide events. Objective thresholds for rain-
fall, snowmelt, and the sum of rainfall and snowmelt (rain-
fall 4+ snowmelt) were defined. Thresholds defined by rain-
fall 4+ snowmelt have the best predictive performance. Mean
intensity, peak intensity, and the accumulated amount of rain-
fall 4+ snowmelt events show similar predictive performance.
Using the entire period of rainfall + snowmelt events results
in better predictive performance than just considering the pe-
riod up to landslide occurrence. Mean annual exceedance
maps were derived from defined regional thresholds for rain-
fall + snowmelt. Mean annual exceedance maps depict cli-
matic disposition and have added value in landslide suscep-
tibility mapping. The results reported in this study highlight
the potential of dynamical downscaling products generated
by regional climate models in landslide prediction.

1 Introduction

Landslide is one of the most severe natural hazards in Kyr-
gyzstan and Tajikistan. More than 300 big landslides oc-
curred in Kyrgyzstan from 1993 to 2010, causing 256 fa-
talities and direct economic losses of USD 2.5 million per
year (Torgoev et al., 2012). Under global warming, wild-
fires, glacial retreat, and permafrost degradation are much
more likely to enhance slope instabilities in mountainous ar-
eas (Froude and Petley, 2018; Palmer, 2020), making these
regions, including Kyrgyzstan and Tajikistan, more vulnera-
ble to climate change. The occurrence of landslides depends
on disposition and triggering events. Disposition refers to the
general settings that make slopes prone to failure without ac-
tually initiating it, such as slope gradient and aspect, geol-
ogy, vegetation cover, climate, etc. (Dai et al., 2002). Com-
mon triggers for landslides are extreme and prolonged rain-
fall, rapid snowmelt, and earthquakes (Wieczorek, 1996).
The majority of landslide research in Kyrgyzstan and
Tajikistan focused on characterizing landslide susceptibility,
i.e., “where” landslides are prone to occur (e.g., Braun et al.,
2015; Saponaro et al., 2015; Havenith et al., 2015b), and how
to improve the landslide susceptibility models (Ozturk et al.,
2020; Barbosa et al., 2021). But little attention is paid to
the atmospheric triggering conditions, and our knowledge of
“when” landslides are likely to occur is limited in this region.
In addition, most landslide susceptibility studies only took
non-climatic factors into account or simply applied annual
precipitation as a climatic factor. According to Segoni et al.
(2018), no rainfall threshold for landslide triggering has been
defined for Kyrgyzstan and Tajikistan yet even though this
topic has already been thoroughly investigated in other parts
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of the world with high landslide susceptibility (e.g., Berti
et al., 2012; Gariano et al., 2015; Giannecchini et al., 2016;
Leonarduzzi et al., 2017). The reasons are twofold. Firstly,
although landslide inventories have been developed in this
region, e.g., the Tien Shan Geohazards Database (Havenith
et al., 2015a, b) and the multi-temporal landslide inventory
from Behling and Roessner (2020), there is a lack of land-
slide inventories with the exact date of landslide occurrence.
Given the highly dynamic nature of weather phenomena, at
least a daily timestamp of landslide records is required to
investigate weather conditions that trigger landslides. Sec-
ondly, there is a lack of atmospheric data. The number of
in situ observation stations in Kyrgyzstan and Tajikistan de-
creased sharply in the 1990s due to reduced funding. There
are currently eight stations in Kyrgyzstan and 26 stations in
Tajikistan available from Global Surface Summary of the
Day (GSOD), which is a publicly available data set. These
numbers are already significantly below the recommendation
of the World Meteorological Organization even for flat areas
(Ilyasov et al., 2013). Despite the sparse distribution, most
GSOD stations are located in low-lying valleys and are not
fully representative of the area.

Rainfall is the most common trigger of landslides all over
the world (Wieczorek, 1996). Over snow-covered regions,
snowmelt is recognized as another common trigger of shal-
low landslides and debris flows (Wieczorek, 1996; Most-
bauer et al., 2018). In Kyrgyzstan and Tajikistan, more than
half of the annual precipitation falls in the form of snow.
Snow cover duration over high mountain ranges in the Tien
Shan and the Pamir is more than 200dyr~! (Dietz et al.,
2014). A large amount of water stored in snowpacks is re-
leased during the melting season. Snowmelt is another im-
portant source of water infiltrating into the soil that in-
creases slope instability. Thus, in Kyrgyzstan and Tajikistan,
snowmelt might also play a role in landslide triggering be-
sides rainfall. But snowmelt is not as easy to be observed as
rainfall and might often be neglected as a landslide trigger,
especially when co-occurring with rainfall.

There are two main approaches to assess rainfall thresh-
olds for landslide triggering. The first approach is physically
based and requires detailed lithological, morphological, and
geotechnical information of each landslide event (Guzzetti
et al., 2007). Unfortunately, this level of detail is usually
restricted to small areas and is not available for the whole
of Kyrgyzstan and Tajikistan. The second one is the empiri-
cal approach based on historical landslide and rainfall data.
The majority of studies applying this approach relied on rain
gauge data to analyze rainfall thresholds (e.g., Berti et al.,
2012; Khan et al., 2012; Bui et al., 2013). However, rain
gauge data are point measurements that cannot capture the
large spatial heterogeneity of rainfall, especially over com-
plex terrain. Gridded products can provide continuous data
in both space and time and can be used in detecting atmo-
spheric triggering conditions of landslides.
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We aim to analyze the atmospheric triggering conditions
of landslides and generate climatic disposition maps that
contain information on these triggering conditions in Kyr-
gyzstan and Tajikistan. For this purpose, we combined freely
available gridded atmospheric data with historical landslide
events. Atmospheric triggers for each landslide event were
determined by the co-occurrence of landslide and weather
events. Properties (mean intensity, peak intensity, accumu-
lated amount) of landslide-triggering events (LTEs) and non-
landslide-triggering events (NLTEs) were compared. Objec-
tive thresholds of these properties for different atmospheric
triggers (rainfall, snowmelt, and the sum of rainfall and
snowmelt) were defined so that they can best separate the
atmospheric conditions that resulted and did not result in
landslides. Finally, we applied the thresholds with the best
predictive performance to generate maps of mean annual ex-
ceedance. In this way, we can transform the weather-scale
triggering conditions into climate-scale dispositions (here-
after referred to as “climatic disposition”).

The objective of this study is threefold: (1) investigate the
role of snowmelt in landslide-triggering processes; (2) find
appropriate quantities of atmospheric triggers for assessing
landslide hazards; and (3) characterize climatic disposition
in terms of rainfall and snowmelt over Kyrgyzstan and Tajik-
istan.

The paper is organized as follows: we describe the data and
methods used in this study in the following section. Results
are presented in Sect. 3 and discussed in Sect. 4. Conclusions
are drawn in Sect. 5.

2 Data and method
2.1 Data
2.1.1 Landslide catalog

Landslide events used in this study come from two
sources: the Global Landslide Catalog (GLC) (Kirschbaum
et al., 2010, 2015) and the Global Fatal Landslide
Database (GFLD) (Froude and Petley, 2018). The GLC has
been compiled by NASA since 2007 and contains all types
of mass movements triggered mostly by rainfall. The sources
of the GLC are mainly media reports, disaster databases, and
scientific reports. The GFLD only includes landslide events
that caused fatalities and is obtained from media reports. It
currently covers the period from 2004 to 2017. These two
landslide inventories were chosen because, to the best of our
knowledge, they are the only ones with the exact landslide
dates available for the study region.

We selected landslide events triggered by atmospheric fac-
tors in Kyrgyzstan and Tajikistan from 2007 to 2018 from
the GLC and 2004 to 2017 from the GFLD. Then we merged
these two data sets and deleted duplicate events that occurred
on the same day and came from the same source link, re-
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Figure 1. Landslide events from 2004 to 2018 extracted from the GLC (white points) and the GFLD (black points). Background contour is
topography from digital elevation model (DEM) data from Shuttle Radar Topographic Mission (SRTM).

sulting in 96 landslide events for Kyrgyzstan and Tajikistan
from 2004 to 2018 (Fig. 1).

2.1.2 Atmospheric data

Rainfall and snowmelt data are extracted from the High Asia
Refined analysis version 2 (HAR v2). The HAR v2 is a newly
developed regional atmospheric data set. It was generated
by dynamical downscaling of the ERAS reanalysis data us-
ing the Weather Research and Forecasting (WRF) model. It
provides atmospheric data with high resolution and accuracy
over High Mountain Asia (Hamm et al., 2020; Wang et al.,
2021). Detailed modeling strategies of the HAR v2 are de-
scribed in Wang et al. (2021). The HAR v2 has a grid spacing
of 10 km and is available in hourly, daily, monthly, and yearly
aggregations. Daily products were used in this study to deter-
mine the climatic trigger of each landslide event (Sect. 2.2.1)
and to define thresholds for landslide triggering (Sect. 2.2.2).
Rainfall was calculated as the difference between total pre-
cipitation and snowfall. Snowmelt is not a standard output of
the WRF and was calculated using the surface energy bal-
ance (SEB). The SEB in the HAR v2 is resolved by the Noah
land surface model (LSM) (Tewari et al., 2004):

Hman_Hs_Hl_Hg, (D

where Ry, Hs, H), and Hg are net radiation, sensible heat
flux, latent heat flux, and ground heat flux (in Wm’z),
respectively. These four variables are directly available in
the HAR v2. Hpy is the heat flux for melting and re-
freezing (in Wm™2). Hp > 0 indicates melting process,
while Hy, < 0 refers to refreezing process. When Hp, > 0,
snowmelt /i, (kg m~2s71) is calculated as

Hi
hpm=—, 2
m= ©))
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where Ay, is the latent heat of fusion. When the calculated
hp is greater than snow water equivalent, then Ay, is set to be
equal to snow water equivalent.

2.2 Methods

2.2.1 Determine the atmospheric trigger of landslide
events

The atmospheric trigger of a landslide event is determined
by the co-occurrence of the landslide event with rainfall and
snowmelt event. If a landslide event only occurred within or
1d after a rainfall (snowmelt) event, then this landslide event
is defined as rainfall (snowmelt) triggered. If there are both a
rainfall event and a snowmelt event on the day or 1 d before
the landslide occurrence day, then the atmospheric trigger of
this landslide event is mixed.

To define a rainfall (snowmelt) event, the daily time se-
ries of rainfall (snowmelt) were extracted from the grid cells
where landslides occurred. For each time series, an inde-
pendent rainfall (snowmelt) event is defined as a series of
consecutive days in which more than 0.2 mmd~"! of rainfall
(snowmelt) is simulated. The value of 0.2 mmd~" is chosen
because it is the traditional precision of daily precipitation
measurement (Jarraud, 2008) and can be applied to separate
dry and wet conditions (Rodwell et al., 2010).

2.2.2 Threshold model for atmospheric triggers

The threshold model developed in this study contains three
steps: (1) define LTEs and NLTEs; (2) define the thresholds
for rainfall, snowmelt, and the sum of rainfall and snowmelt
(hereafter referred to as rainfall 4+ snowmelt) based on max-
imizing the predictive performance using 2 x 2 contingency
tables; and (3) validate and assess the uncertainties of the
defined thresholds. The methods for the first two steps were
adopted from Leonarduzzi et al. (2017). Only the landslide
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events for which the atmospheric triggers could be deter-
mined were used for threshold modeling.

The first step is to define LTEs and NLTEs for rainfall,
snowmelt, and rainfall 4+ snowmelt. Here, we take rainfall
as an example to describe the procedure. First, the method
used in Sect. 2.2.1 is applied to define rainfall events for
each time series extracted from grid cells where landslides
occurred. Next, if a landslide event occurred during or 1d
after a rainfall event, then this rainfall event is classified as
a landslide-triggering event. Given the uncertainty in times-
tamps of landslide events, the day after is also considered
as a temporal relaxation. Otherwise, if a rainfall event is not
associated with any landslide events, it is classified as a non-
landslide-triggering event. For each rainfall event, we cal-
culated three event properties: mean intensity Imean, maxi-
mum intensity Inax, and the accumulated amount of rainfall
for the entire event Q. For triggering events, we also calcu-
lated these three properties by only considering the period
up to the day of the landslide occurrence (hereafter referred
to as UTL, meaning up-to-landslide). Note that not all the
landslide events co-occurred with a rainfall event. For these
events, we set Imean, Imax, and Q to zero. The same procedure
for defining LTEs and NLTEs was conducted for snowmelt
and rainfall + snowmelt as well.

The second step is to define thresholds of rainfall,
snowmelt, and rainfall + snowmelt for entire events and UTL
events using Imean, Imax, and Q. No single threshold can per-
fectly separate LTEs from NLTEs since their distributions
overlap. We applied 2 x 2 contingency tables to select the
threshold that yields the best predictive performance. Using
a certain threshold as a binary classifier, LTEs and NLTEs
were categorized into true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). The Peirce skill
score (PSS) (Hanssen and Kuipers, 1965) was applied as the
measure of the predictive performance because it is trail-
independent, which means it is unbiased even when the num-
bers of LTEs and NLTEs are not equally presented (Wood-
cock, 1976). The PSS is also known as the Hanssen—Kuiper
skill score and the true skill statistic. It is calculated as the
difference between hit rate (HR) and false alarm rate (FAR):

PSS = HR — FAR, 3)
TP
HR= —— . @)
TP+ FN
FP
FAR= ——. (5
FP + TN

We chose the threshold that maximizes the PSS. We also
computed the Euclidean distance (d) to the optimal point
(HR =1, FAR =0), which is another commonly used skill
score in this application (e.g., Gariano et al., 2015; Piciullo
et al., 2017; Postance et al., 2018; Zhuo et al., 2019). Ad-
ditionally, the receiver operating characteristic (ROC) curve
was used to determine the general predictive power of a cer-
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tain predictor by calculating the area under the ROC curve
(AUC) (Fawcett, 2006).

The last step is to validate the threshold model and as-
sess uncertainty. For the calibration of thresholds, all land-
slide event samples were utilized, and corresponding statis-
tic measures were calculated; i.e., the threshold model was
trained and tested on the same data set. To test the model’s
predictive ability on an unseen data set, we performed k-fold
cross-validation. Landslide events were randomly split into
k folds with k = 8. Then for each unique fold, the fold was
taken as the testing set, and the remaining k£ — 1 folds were
taken as the training set. Mean values of thresholds, the cor-
responding statistic measures, and their uncertainties repre-
sented by standard deviations were reported.

2.2.3 Mean annual exceedance

Mean annual exceedance (Ngy,) is calculated for each
HAR v2 grid cell. It is defined as the number of events that
exceed a certain threshold over a certain period (Ny,) divided
by the total number of years (N,):

Nih=—. (6)

The unit of Ny, is the number of events per year. Mean an-
nual exceedance transforms weather-scale triggering condi-
tions to climate-scale disposition. It depicts where landslides
are likely to occur from the climatic aspect.

3 Results
3.1 The role of snowmelt in landslide triggering

Figure 2 shows the climatology of seasonal rainfall,
snowmelt, and rainfall + snowmelt resolved by the HAR v2.
We define seasons as commonly done in meteorology, span-
ning 3 months each: winter (December—February, DJF),
spring (March—-May, MAM), summer (June—August, JJA),
and autumn (September—November, SON). A high amount
of rainfall concentrates in the western foothill of the Fergana
Range, the northern foothill of the Turkestan Range, and the
Tajik Basin in spring and shifts northeastwards into the Tien
Shan in summer. Snowmelt occurs in spring over most high
elevated areas. In summer, while most regions are snowmelt-
free, the Pamir plateau still experiences a high amount of
continuous snowmelt, which is in line with the results of Di-
etz et al. (2014) using remote sensing data.

Atmospheric triggers for each landslide event are deter-
mined using the method described in Sect. 2.2.1, and the re-
sults are shown in Fig. 3. Table A1 lists all 96 events and the
climatic triggers detected by the HAR v2. Figure Al shows
the temporal process of rainfall and snowmelt for selected
landslide cases. Nine landslide events did not occur within
any rainfall event, snowmelt event, or rainfall + snowmelt
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Figure 2. Seasonal rainfall, snowmelt, and rainfall 4+ snowmelt from the HAR v2 from 2004 to 2018. Black circles: seasonal landslide events
from the GLC and the GFLD. Topographic shading is based on DEM data from SRTM. DJF: December—February; MAM: March-May;

JJA: June—August; and SON: September—November.

event. This mismatch between landslide information and
weather information stems from the uncertainties in landslide
locations and timing, as well as the uncertainties from rain-
fall and snowmelt simulated in the HAR v2 (detailed discus-
sion in Sect. 4.1). These nine events are referred to as “not
detected” (white points in Fig. 3) and are excluded. The re-
maining 87 landslide events were used for further analysis.
Landslide events that were only triggered by rainfall mainly
cluster in Tajik Basin and the northeastern rim of the Fergana
Basin, where the contribution of rainfall to the annual sum of
rainfall and snowmelt is high (Fig. 3).

The annual cycles of rainfall, snowmelt, and rain-
fall + snowmelt are compared with monthly landslide occur-
rences in Fig. 4. The study region experiences a peak of land-
slide activity in April and May, which corresponds with the
peak of rainfall + snowmelt. While rainfall is the dominant
trigger of landslides, snowmelt contributes to the triggering
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of 40 % of landslide events (35 out of 87). A total of 29 % of
landslide events (25 out of 87) are attributed to the combined
effect of rainfall and snowmelt. Most snowmelt-contributing
events occurred in April when snowmelt amount is the high-
est. March and June have almost the same amount of rain-
fall + snowmelt. However, there are more landslide occur-
rences in June. This could be the result of soil still being
frozen in March which stabilizes the slope. As shown in
Fig. 4a, both soil temperature at the top soil layer (0-0.1 m)
and air temperature at 2 m are still below zero in March.

3.2 Thresholds of atmospheric triggers for landslides
in Kyrgyzstan and Tajikistan

Statistics of different properties of LTEs and NLTEs for
rainfall, snowmelt, and rainfall + snowmelt are presented in
Fig. 5 in the form of empirical cumulative distribution func-
tion (eCDF). Rainfall and snowmelt have a high percentage
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Figure 3. Contribution (%) of snowmelt to the annual sum of rainfall and snowmelt (background contour) and atmospheric triggers of
96 landslide events extracted from the GLC and the GFLD (points). Topographic shading is based on DEM data from SRTM.
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Tajikistan extracted from the HAR v2; (b) mean monthly rainfall and snowmelt averaged over Kyrgyzstan and Tajikistan extracted from the
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thresholds for UTL events defined in Table 1.

of events with Ipean =0, Imax =0, and Q = 0. This is be-
cause, for landslide events that cannot be detected by only
rainfall (orange points in Fig. 3), Imean, Imax, and Q of rain-
fall for these events were all set to zero. The same proce-
dure was conducted for events that cannot be detected by
only snowmelt (blue points in Fig. 3). It can be seen in
Fig. 5 that LTEs for both entire events and UTL events have
stronger Imean and Imax, as well as larger Q, compared to
NLTEs. Moreover, snowmelt events have much higher Q
but lower Iean and Inax than rainfall events, indicating that
snowmelt events are in general prolonged and not as intense
as rainfall events. Overall, the HAR v2 combined with land-
slide inventories from the GLC and the GFLD can distin-
guish LTEs from NLTEs well and has potential in landslide
threshold modeling.

We calibrated thresholds of Inean, Imax, and Q using rain-
fall, snowmelt, and rainfall + snowmelt as predictors. The
procedure was conducted for both entire events and UTL
events. Predictive performance is better when using the entire
period than just using the UTL period (Table 1), which was
also concluded by Leonarduzzi et al. (2017). One of the rea-
sons is that by considering a longer period, Imean, Imax, and

https://doi.org/10.5194/nhess-21-2125-2021

especially Q of LTEs generally increase, making it easier to
distinguish LTEs from NLTEs. This can also be seen from
the eCDFs in Fig. 5. In the eCDF space, the threshold de-
fined by maximizing PSS is the point on the x axis where the
vertical distance between the LTE curve and the NLTE curve
is the largest. The eCDFs of UTL events are closer to the
NLTE curve than eCDFs of the entire events. Therefore, the
maximum PSSs of UTL events are smaller (Fig. 5).The bet-
ter performance by considering the entire period could also
indicate that there exists some uncertainty of landslide tim-
ing reported in the GLC and the GFLD. It can be seen from
Table 1 that rainfall + snowmelt has the best predictive per-
formance for both entire events and UTL events. The predic-
tive performance indicated by d, PSS, and AUC of the three
event properties (Imean, Imax, and Q) are quite similar, but
using Imax as a predictor leads to a lower FAR but also a
lower HR when compared with Q and Ipean.

K -fold cross-validation results for entire events and UTL
events are presented in Tables A2 and A3. Cross-validation
reduces the sample size and makes the results more sensitive
to outliers. The validation results are in line with the con-
clusions drawn by calibration: (1) among all predictors, rain-

Nat. Hazards Earth Syst. Sci., 21, 2125-2144, 2021
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Table 1. Calibrated thresholds of mean intensity /mean (mm d~1), maximum intensity Imax (mm d—1), and accumulated amount Q (mm)
for entire events and UTL events of rainfall, snowmelt, and the sum of rainfall and snowmelt (rainfall + snowmelt), as well as corresponding

performance statistics.

Predictor Property Threshold HR  FAR d PSS AUC
Rainfall Imean 360 062 035 051 027 0.62
(entire event) Imax 11.20 049 0.18 0.54 032 0.65
(0] 1695 052 0.18 0.52 034 0.67
Snowmelt Imean 7.05 023 006 077 0.17 0.31
(entire event) Imax 1345 024 0.04 076 020 0.32
(0] 119.60 024 0.03 0.76 0.21 0.33
Rainfall + snowmelt  Imean 495 0.71 025 038 046 0.78
(entire event) Imax 12.80 0.67 0.15 0.37 051 0.81
0 1715 074 023 035 050 0.81
Rainfall Imean 305 060 040 057 020 0.59
(UTL event) Imax 1240 034 0.16 067 0.19 0.58
(0] 9.25 052 031 057 021 059
Snowmelt Imean 740 022 005 0.78 0.17 031
(UTL event) Imax 1280 024 0.05 0.76 0.19 0.32
(0] 9830 024 004 0.76 020 0.32
Rainfall + snowmelt  Ipean 505 068 025 041 043 0.76
(UTL event) Tmax 1405 0.59 0.14 044 045 0.77
0 1565 0.66 025 043 040 0.76

fall 4+ snowmelt has the best predictive performance for both
entire events and UTL events; (2) predictive performance is
better when using the entire period than just using the UTL
period; and (3) predictive performance of Iyean, Imax, and
Q for rainfall 4+ snowmelt are quite similar, but Iy, has a
lower FAR and also a lower HR.

3.3 Mean annual exceedance

Using the thresholds defined in Sect. 3.2 for rain-
fall + snowmelt UTL events, Fig. 6 presents the annual num-
ber of rainfall +snowmelt events that exceed the thresh-
olds of Imean =3.05mmd~!, Ipax =14.05mmd™—!, and Q =
15.65 mm (hereafter referred to as Imean,th, Imax,th, and Q).
Here, only the results for UTL events are presented since
the defined thresholds of entire events and UTL events for
rainfall + snowmelt are very similar and only deviate within
10 %, although their predictive performance is different (Ta-
ble 1).

Locations with higher mean annual exceedance
over Imax i indicate a higher chance of having rain-
fall 4 snowmelt events with high intensity, such as the
Fergana Range and the northeastern Tajik Basin. These
two regions have a high contribution of rainfall to annual
rainfall + snowmelt (Fig. 3), and rainfall events tend to
have stronger intensity than snowmelt events (Fig. 5).
Locations with high mean annual exceedance over Q, but
low exceedance over Imax i, including the Pamir Plateau
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and the Tien Shan, indicate that prolonged events instead
of short and intense events are more frequent. The mean
annual exceedance maps of Qu, and Imean,tn correspond
better with the landslide occurrences since they encompass
both extreme events and prolonged events. Landslide events
reported from the GLC and the GFLD are generally located
in areas with high exceedance over Qg and Imean, . How-
ever, the mean annual exceedance maps of Qg, and Imean,th
also have more areas with false alarms, i.e., areas with
high mean annual exceedance but no landslide occurrence.
In remote areas, such as the Tien Shan, high false alarms
could be due to the fact that landslides extracted from media
reports are generally underreported in remote regions. This
is discussed in detail in Sect. 4.1. In contrast, the mean
annual exceedance map of Imax m misses more landslide
events but has less false alarm area when compared to the
exceedance maps of Qw and Imean, th-

4 Discussion
4.1 Sources of uncertainty

The uncertainty of the results depends on the accuracy of
the data and the method applied to analyze the data. Our ap-
proach is purely empirical-based, which allows us to investi-
gate broader areas without knowing the detailed surface char-
acteristics of each landslide event. However, slope instability
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Figure 6. Mean annual exceedance (number of events per year) of
(a) Imean = 5.05mmd ™", (b) Imax = 14.05mmd ™!, and (¢) Q=
15.65 mm for the rainfall + snowmelt UTL events. Black circles:
landslide events from the GLC and the GFLD. Topographic shading
is based on DEM data from SRTM.

often results from numerous factors. The interaction between
non-climatic characteristics and atmospheric triggers is also
responsible for the initiation of landslides (Berti et al., 2012;
Jia et al., 2020), which can not be captured by empirical
methods. This is the reason why not all rainfall + snowmelt
events that exceed Imean,th, Imax.th, and Qu triggered land-
slides (Fig. 6) even though the number of landslides is un-
derestimated.

Uncertainty in landslide inventories and atmospheric data
is a very common issue in studies investigating thresholds
for landslide triggering. These two sources of uncertainty
have been comprehensively discussed and quantified (e.g.,
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Nikolopoulos et al., 2014, 2015; Marra et al., 2016, 2017;
Marra, 2019; Rossi et al., 2017; Peres et al., 2018). Uncer-
tainty in these two data sources generally results in an un-
derestimation of rainfall thresholds, leading to a higher false
alarm rate (Nikolopoulos et al., 2014, 2015; Marra et al.,
2016; Peres et al., 2018). In the following subsections, we
discuss the uncertainty stemming from the landslide invento-
ries (the GLC and the GFLD) and rainfall and snowmelt in
the HAR v2.

4.1.1 Uncertainty of landslide inventories

Uncertainties of the GLC and the GFLD are comprehen-
sively discussed in Kirschbaum et al. (2010), Kirschbaum
et al. (2015), and Froude and Petley (2018). The first ma-
jor problem of these two data sets is that they underestimate
the total number of landslides. This is because these two data
sets’ primary sources are media reports, which are biased to-
wards events with human casualties (Carrara et al., 2003).
The second issue is that the spatial distribution of landslides
is biased towards populated areas. In our study area, land-
slide events also tend to cluster in areas with high population
density, e.g., the eastern rim of the Fergana Basin and the
Tajik Basin. Landslide number over remote areas is much
more likely to be underreported. In addition, there is large
uncertainty in landslide location because most media reports
do not contain the exact location where landslides were ini-
tiated but rather just the name of the village, road, or city af-
fected by landslides. An example in our case is the landslide
event in the Issyk-Kul Basin (Fig. 1), the location of which
is in a flat area, and the location accuracy provided by the
GLC is “exact”. This landslide event’s initial zone must be
different from the reported location and somewhere nearby
with slopes. We also failed to determine the climatic trigger
of this landslide event using the HAR v2. Last but not least,
landslide timing was also reported with a certain degree of
uncertainty. Although it is more typical that a landslide was
reported after its actual occurrence (positive errors), nega-
tive errors are also possible depending on the interpretation
of historical landslide information by an analyst (Peres et al.,
2018). Our results show that using the entire weather event
period leads to a better predictive performance than just us-
ing the UTL period (Table 1). This could be an indication of
negative errors in the landslide timing.

Despite these known limitations, the GLC and the GFLD
still provide the lower boundary of landslide number and are
proven to be valuable in global and regional landslide studies.
For example, the GLC has been successfully applied to de-
tect the initiation of rainfall-induced landslides globally (Jia
et al., 2020), to investigate the spatiotemporal distribution of
potential landslide-triggering factors (Stanley et al., 2020),
to explore the synoptic-scale precursors of landslides (Hunt
and Dimri, 2021), and to evaluate the Global Landslide Haz-
ard Assessment Model (Kirschbaum and Stanley, 2018). Al-
though the landslide number is known to be incomplete, our
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results show that they can still present the seasonal distribu-
tion of landslide occurrence reasonably well (Fig. 4). This
was also concluded by Kirschbaum et al. (2015), who stated
that the reason for the unbiased seasonal distribution of land-
slide occurrence is that the compilation method depends on
media alerts, which are consistent throughout the year. Ad-
ditionally, even though location uncertainty exists, we could
determine atmospheric triggers of 91 % of landslide events
(87 out of 96). The reason could be that landslide-triggering
rainfall and snowmelt events generally have a large spatial
extend (Leonarduzzi et al., 2017).

4.1.2 Uncertainty of atmospheric data

Extracting weather data that can represent the exact weather
conditions at landslide sites is always a challenge in studies
investigating rainfall thresholds for landslide triggering. Rain
gauges are the main source of rainfall information (Segoni
et al., 2018), and it is very seldom that landslide initial lo-
cations are gauged. Due to the highly heterogeneous spa-
tial distribution of precipitation, especially over complex ter-
rain, there exists great uncertainty when rainfall is not di-
rectly measured from landslide initial points. Additionally,
Marra et al. (2016) found that the initial points of shallow
landslides and debris flows generally correspond to the local
peak of rainfall. Rain depth decreases with distance, caus-
ing an underestimation when rainfall is measured away from
the landslide initial point. Traditionally, the nearest gauge
is used to represent the weather condition at the landslide
site, which sometimes can be kilometers away. Nikolopou-
los et al. (2015) examined other more complicated interpo-
lation methods, such as inverse distance weighting and ordi-
nary kriging, and concluded that these methods did not bring
any particular added value to the simplest nearest neighbor
method.

Using gridded data can avoid this allocation problem
(Leonarduzzi et al., 2017). But uncertainties still exist since
gridded data only represent the grid-mean value but not the
“true” weather conditions at landslide sites. Nevertheless, it
is still essential that the gridded data used in our study can
accurately represent the grid-mean value. The WRF model
configurations of the HAR v2, such as the forcing strategy
and physical parameterization schemes, were carefully cho-
sen to ensure its quality (Wang et al., 2021). Several studies
(Pritchard et al., 2019; Li et al., 2020) indicate the high accu-
racy and quality of the old version of the High Asia Refined
Analysis (HAR) (Maussion et al., 2014). Wang et al. (2021)
compared the performance of the two versions of the HAR
against in situ observations from 57 GSOD stations over the
High Mountain Asia in terms of daily precipitation and air
temperature at 2m. It was concluded that compared to the
old version, HAR v2 generally produces slightly higher pre-
cipitation amounts with a mean bias of 0.36mmd~'. Fur-
thermore, Hamm et al. (2020) compared the HAR v2 with
other gridded precipitation data sets at different spatial reso-
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lutions, including reanalysis data and satellite-based precipi-
tation retrieval, over a rugged terrain of the central Himalayas
and the southwestern Tibetan Plateau. It was concluded that
the HAR v2 is the only product that can resolve orographic
precipitation, which is a fundamental process over complex
terrain. Simulation of air temperature at 2 m in the HAR v2 is
better than the old version due to the snow depth correction
approach (Wang et al., 2021). Snowmelt in the HAR v2 is re-
solved by the Noah LSM, which only considers a single layer
of snowpack (Koren et al., 1999). Several studies found un-
certainty of the Noah LSM in reproducing the snow-related
process, e.g., the overestimation of snow albedo (e.g., Chen
et al., 2014; Minder et al., 2016; Tomasi et al., 2017). Nev-
ertheless, the snow-related process is the major weakness of
LSMs and needs further improvement in the future (Chen
etal., 2014).

4.1.3 Impact of spatial resolution of atmospheric data

Previous studies have shown that the spatial resolutions of
gridded rainfall data have impacts on identifying landslide-
triggering thresholds (Marra et al., 2017; Nikolopoulos et al.,
2017). To investigate the influence of spatial resolution of
rainfall + snowmelt data on the event properties of landslide-
triggering weather events and the triggering thresholds, we
resampled the rainfall 4+ snowmelt data from HAR v2 to
lower resolutions (20, 30, and 40km). Then, we repeated
the procedure described in Sect. 2.2.2 to determine the event
properties of LTE UTL events and their associated thresh-
olds. The results are presented in Fig. 7. There are nine “not
detected” events when using the original HAR v2 10km
data (Fig. 3), which means the rainfall + snowmelt amounts
at these landslide grid points are near zero (< 0.2mmd~")
on the day and 1d before landslide occurrence. By lower-
ing the spatial resolution, more events can be detected. This
implies the uncertainty in the reported landslide location
since resampling of rainfall + snowmelt encompasses rain-
fall 4+ snowmelt information from nearby grid points. In gen-
eral, Imean and Inax decrease with the increase in grid size,
which is in line with the findings of Hamm et al. (2020)
that higher-resolved products generally capture more ex-
treme events than coarser products. Iiyean and ey thresholds
defined by coarser products are also generally lower. The im-
pact of grid size on Q is the opposite: larger grid size leads to
higher Q and threshold value. This is closely associated with
the increase in event duration with the increase in grid spac-
ing, resulting from the fact that the resampling process can
blend several localized events temporally together. However,
lowering the spatial resolution does not lead to worse predic-
tive performance. This, on the one hand, implies again that
lower resolution can partly compensate for the uncertainty
in landslide locations. On the other hand, it indicates that al-
though landslide initiation itself is a highly localized phe-
nomenon, the weather processes that ensure sufficient water
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Figure 7. Boxplots demonstrating the impact of spatial resolu-
tion of atmospheric data on Imean, Imax, @, and duration of LTE
UTL events, as well as the associated landslide-triggering thresh-
olds (blue stars). The yellow line denotes the median, and the green
triangle indicates the mean. Outliers are not shown for a better inter-
comparison, and n denotes the number of landslide events detected
by rainfall + snowmelt.

input into the system and that trigger landslides can be clearly
identified at the mesoscale (Prenner et al., 2018).

Based on the above analysis, it can be expected that a
convection-permitting-scale (< 10 km) downscaling simula-
tion would provide a more realistic representation of weather
events that initialized landslides. Compared to such a high-
resolution simulation, the HAR v2 10km data would un-
derestimate the intensity and overestimate the duration of
landslide-triggering rainfall 4+ snowmelt events. Moreover,
the 10 km resolution of the HAR v2 is not able to explicitly
resolve convection processes. Convection-permitting-scale
simulations show improvement over simulations applying
cumulus parameterization schemes in several aspects, such
as more accurate reproduction of the timing of precipita-
tion peaks (Ou et al., 2020; Zhou et al., 2021). However, a
finer resolution has a lower tolerance for uncertainty in the
landslide location. The potential of a kilometer-scale simu-
lation cannot be realized if the landslide location uncertainty
is larger than the grid size. Thus, for our study region, future
studies should not focus only on acquiring high-resolution
and high-quality atmospheric data but also on developing
landslide inventories with higher location accuracy.
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4.2 Climatic disposition

In probabilistic risk analysis (e.g., Scherer et al., 2013), the
risk that a system experiences an adverse effect caused by
a hazardous process is given as the product of hazard and
vulnerability. Vulnerability itself depends on exposure and
sensitivity. Adverse effects only occur when the elements at
risk are exposed to a hazardous event. Thus, risk is a func-
tion of hazard, exposure, and sensitivity. Applying this risk
concept to our case, the adverse effect is a landslide triggered
by rainfall + snowmelt, and the hazardous process is a rain-
fall + snowmelt event that exceeds the defined thresholds.
The risk that a location experiences a landslide triggered by
rainfall + snowmelt depends on two factors: (a) how frequent
a location is exposed to rainfall 4+ snowmelt events that ex-
ceed Imean. th, Imax.th, and O, and (b) how sensitive slope in-
stability can be triggered at this location. Climatic disposition
represented by mean annual exceedance is actually factor (a)
and comprises both aspects of hazard and exposure. Sensi-
tivity is non-climatic landslide susceptibility that is only con-
trolled by terrestrial characteristics. Thus, to assess landslide
susceptibility, both climatic and non-climatic aspects need to
be included.

The majority of landslide susceptibility studies only con-
sidered non-climatic factors. We compared our mean annul
exceedance maps with a non-climatic landslide susceptibil-
ity map developed by Stanley and Kirschbaum (2017) at a
resolution of approximately 1km (Fig 8). This non-climatic
susceptibility map was generated using a heuristic fuzzy ap-
proach, in which slope, faults, geology, forest loss, and road
networks were taken into account. This map is chosen be-
cause it covers the whole of Kyrgyzstan and Tajikistan. Even
though the non-climatic susceptibility map and our mean
annual exceedance maps were generated by totally differ-
ent methods, they share some similarities. They both show
higher values over areas with steep slopes and lower val-
ues in intermontane basins and valleys. This is because topo-
graphic relief is considered the best first-order rainfall predic-
tor (Bookhagen and Strecker, 2008). The non-climatic sus-
ceptibility map includes information on topography, and to-
pography is explicitly resolved during dynamical downscal-
ing. Mean annual exceedance maps not only display these
local-scale features caused by topography but also comprise
general atmospheric circulation processes. Around 23% of
landslide events are located in zones with low and very low
susceptibility. Landslide locations with low susceptibility in
the eastern and southern rims of the Fergana Basin exhibit
high climatic disposition (Fig. 6). This discrepancy between
the non-climatic landslide susceptibility and our mean an-
nual exceedance maps suggests that both climatic and non-
climatic aspects need to be considered for landslide suscep-
tibility mapping. Some event locations show both low sus-
ceptibility and low climatic disposition (e.g., in southwestern
Tajikistan), which implies the uncertainty in reported land-
slide locations.
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Figure 8. Non-climatic landslide susceptibility map computed using slope, geology, fault zones, road networks, and forest loss developed by
Stanley and Kirschbaum (2017). Black circles: landslide events from the GLC and the GFLD. Topographic shading is based on DEM data

from SRTM.
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Figure 9. Annual sum of rainfall and snowmelt averaged over 2014-2018 from HAR v2. Black circles: landslide events from the GLC and

the GFLD. Topographic shading is based on DEM data from SRTM.

In addition, some landslide susceptibility studies took cli-
mate into account, but they often simply applied averaged an-
nual precipitation (e.g., Shahabi et al., 2014; Havenith et al.,
2015b; Wang et al., 2015). Averaged annual precipitation
only shows the climatological conditions in general. Mean
annual exceedance is derived from weather-scale triggering
conditions, and therefore, it also contains information on ex-
treme processes. In our case, for instance, the mean annual
rainfall + snowmelt map does not correspond well with land-
slide occurrences, especially in the Tajik Basin and the north-
eastern rim of the Fergana Basin (Fig. 9). But these landslide
events are captured better in both mean annual exceedance
maps (Fig. 6). This indicates the added value of climatic dis-
position derived from triggering conditions.
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4.3 Thresholds for different landslide size

The GLC provides six categorized landslide sizes. Land-
slide events in Kyrgyzstan and Tajikistan fall into the fol-
lowing categories: (1) small — small landslide affecting one
hill slope or small area; (2) medium — moderately sized land-
slide that could be either a single event or multiple landslides
within an area and that involves a large volume of material;
(3) large — large landslide or series of landslides that occur
in one general area but cover a wide area; and (4) unknown
(Kirschbaum et al., 2015). The GFLD does not contain infor-
mation about landslide size. Therefore, for landslide events
from the GFLD, we set the landslide size as “unknown”. Ta-
ble 2 presents the calibrated thresholds and corresponding
statistical scores for these categories for UTL events. Using
entire events leads to similar results (not presented here).
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Table 2. Calibrated thresholds of Imean (mm d_l), Imax (mm d_l), and Q (mm) for UTL events of the sum of rainfall and snowmelt
(rainfall + snowmelt), as well as corresponding performance statistics for different categories of landslide size, and n refers to the number of
landslides in each category.

Landslide size  Property Threshold HR  FAR d PSS AUC

Small Imean 985 1.00 007 007 093 097
(n=>5) Imax 21,55 1.00 007 007 093 097
0 12425 100 0.04 004 096 098
Medium Imean 480 063 025 044 039 0.71
(n =41) Imax 1405 049 012 053 037 073
0 965 0.73 035 044 038 0.72
Large Imean 810 055 0.1 047 044 0.72
(n=11) Imax 2175 045 005 055 040 0.73
0 285 1.00 063 063 037 073
Unknown Imean 525 077 026 035 051 0.80
(n = 30) Imax 1325 073 017 032 057 081
0 1690 0.77 025 034 051 079

Interestingly, the thresholds for landslides with small sizes
are higher than other categories and have the best predictive
performance. All of these five small-sized landslide events
are snowmelt-contributed events that occurred from March to
May. The worse predictive performance for landslides with
larger sizes could indicate that for those events, the trigger-
ing mechanism is much more complicated than small-sized
events, and other non-atmospheric factors might also play
a role. However, the sample size of small-sized landslide
events is too small to draw a robust conclusion. The num-
ber of small-sized landslides is expected to be underreported
since media reports are biased towards events with more se-
vere impacts.

5 Conclusions

In this study, we combined gridded atmospheric data from
the HAR v2 with 87 landslide records extracted from the
GLC and the GFLD to analyze rainfall and snowmelt con-
ditions that triggered landslides in Kyrgyzstan and Tajik-
istan. Thresholds for landslide triggering were determined
for different event properties for rainfall, snowmelt, and rain-
fall + snowmelt. Mean annual exceedance maps were gener-
ated based on the defined thresholds.

Monthly landslide counts in Kyrgyzstan and Tajikistan
correspond well with the monthly distribution of rain-
fall 4+ snowmelt. An exception is March when soil temper-
ature at the top soil layer (0-0.1 m) and air temperature at
2 m are both below zero. Investigation of the relationship be-
tween landslides and soil temperature could be a topic for
future studies. Snowmelt plays a crucial role in landslide trig-
gering in Kyrgyzstan and Tajikistan since it contributes to the
triggering of 40 % of landslide events.

https://doi.org/10.5194/nhess-21-2125-2021

By including snowmelt as an additional trigger, the skill
of landslide prediction was significantly improved. Ipean,
Imax, and Q have similar predictive performance. Thresholds
of Imean =5.05mmd™", I =14.05mmd™!, and Q =
15.65mm for UTL events were defined for landslide trig-
gering in Kyrgyzstan and Tajikistan. Using the entire period
of weather events leads to similar threshold values but bet-
ter predictive performance. This could indicate uncertainty
in landslide timing. Mean annual exceedance maps derived
from these thresholds depict climatic disposition and have
added value in landslide susceptibility mapping.

The majority of previous studies applied rainfall estimates
from in situ gauges or satellite retrievals. Our study demon-
strates the potential of the regional climate model (RCM) in
landslide prediction. Dynamical downscaling products gen-
erated by RCMs can provide physically consistent, high-
resolution data that are extremely valuable for data-scarce
areas. Given the global applicability of the dynamical down-
scaling method, our approach can also be applied in other re-
gions as long as the number and quality of landslide records
are sufficient. Even though a higher-resolved downscaling
product can reproduce landslide-triggering weather events
more realistically, it has a lower tolerance for the uncertainty
in landslide locations and does not necessarily lead to bet-
ter predictive performance. Future studies in Kyrgyzstan and
Tajikistan should focus on developing landslide inventories
with both high location accuracy and timing accuracy to re-
duce the uncertainty in triggering thresholds.
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Figure Al. Event-based temporal process of rainfall and snowmelt for selected landslide events with landslide triggers defined as (a) rainfall,
(b) snowmelt, (¢) mixed, and (d) not detected, according to the method described in Sect. 2.2.1.

Nat. Hazards Earth Syst. Sci., 21, 2125-2144, 2021

https://doi.org/10.5194/nhess-21-2125-2021



X. Wang et al.: Atmospheric triggering conditions and climatic disposition of landslides

2139

Table Al. Landslide events in Kyrgyzstan and Tajikistan extracted from the GLC and the GFLD from 2004 to 2018. The column “trigger”
indicates the trigger of landslide events detected by the HAR v2.

Event date Source  Longitude Latitude Country Trigger

17 Apr2004  GFLD 73.0420 40.3428 Kyrgyzstan Mixed

22 May 2004 GFLD 69.2172 39.8106  Tajikistan Rainfall
14 Jun 2004 GFLD 70.8718 39.8734 Kyrgyzstan  Rainfall
17 Nov 2004 GFLD 70.0802  38.8324  Tajikistan Mixed

13 Mar 2005 GFLD 69.0502  40.0141  Tajikistan Mixed

9 Apr 2005 GFLD 69.2656  38.3801  Tajikistan Mixed

25 Mar 2007 GLC 70.1951 39.0071  Tajikistan Mixed

1 Apr 2007 GLC 72.5920  37.5760  Tajikistan Mixed

5 Apr 2007 GLC 71.6110  36.7270  Tajikistan Snowmelt
17 Apr 2007  GLC 71.6849 41.5552  Kyrgyzstan  Rainfall
17 Apr 2007  GLC 68.2140  38.5330 Tajikistan Rainfall
22 Apr2007  GLC 73.1416 40.8870  Kyrgyzstan  Rainfall

5 Jun 2007 GFLD 69.1633 37.8276  Tajikistan Rainfall
21 Jul 2007 GLC 73.0000  38.0000  Tajikistan Mixed

22 Jul 2007 GLC 70.4400  40.7500  Tajikistan Not detected
22 Jul 2007 GFLD 71.0363 38.5289  Tajikistan Rainfall
16 Apr 2009  GFLD 71.9767 41.6184 Kyrgyzstan Rainfall
21 Apr2009 GLC 68.7882  37.8515 Tajikistan Rainfall
5 May 2009 GFLD 70.1529 38.1701  Tajikistan Rainfall
7 May 2009 GFLD 69.7741 38.6726  Tajikistan Rainfall
11 May 2009 GFLD 71.0363 38.5289  Tajikistan Snowmelt
14 May 2009 GLC 68.6900 37.9867  Tajikistan Rainfall
16 May 2009 GFLD 71.0363 38.5289  Tajikistan Snowmelt
20 May 2009 GFLD 69.3199 38.7221  Tajikistan Rainfall
13 Mar 2010 GFLD 69.0502 40.0141  Tajikistan Snowmelt
7 May 2010 GLC 69.8054 379148  Tajikistan Rainfall
7 May 2010 GFLD 70.0994 37.8560  Tajikistan Rainfall
3 Jun 2010 GLC 72.9227 39.9854  Kyrgyzstan Mixed

11 May 2011  GLC 72.8282  41.4088 Kyrgyzstan Rainfall
12 Jun 2011 GLC 69.1238 38.2644  Tajikistan Rainfall
12 Jun 2011 GLC 69.5667 39.9342  Kyrgyzstan  Rainfall
12 May 2012 GLC 70.8159  40.0538 Kyrgyzstan Rainfall
13 May 2012 GFLD 70.8718 39.8734 Kyrgyzstan  Rainfall
28 Jun 2013 GLC 72.0106 41.6518 Kyrgyzstan  Rainfall
12 Apr2014  GLC 69.0971 379107 Tajikistan Rainfall
12 Apr 2014  GFLD 70.0994  37.8560  Tajikistan Rainfall
16 Apr2014  GFLD 68.6749 38.0710  Tajikistan Rainfall
26 Apr2014  GFLD 68.7626  38.5685  Tajikistan Rainfall
3 Apr 2015 GFLD 69.4222  38.5428  Tajikistan Rainfall
8 May 2015 GLC 70.0162  38.0991 Tajikistan Rainfall
24 May 2015 GLC 72.9053 40.8986  Kyrgyzstan Rainfall
24 May 2015 GFLD 73.2559 41.1036  Kyrgyzstan Rainfall
10 Jul 2015 GLC 70.4275 39.0712  Tajikistan Not detected
16 Jul 2015 GLC 71.7041 37.5773  Tajikistan Rainfall
21 Jul 2015 GFLD 71.7929 38.4071  Tajikistan Rainfall
26 Apr2016  GLC 72.9071 40.8894  Kyrgyzstan  Not detected
9 May 2016 GLC 68.5748 39.3160  Tajikistan Mixed

15 May 2016 GLC 72.9293 41.3431 Kyrgyzstan  Rainfall
23 May 2016  GLC 72.7907 40.5304 Kyrgyzstan Rainfall
27 May 2016 GLC 69.8266  39.8751 Kyrgyzstan Rainfall
28 May 2016 GLC 71.5577 40.0150  Kyrgyzstan Mixed

16 Jun 2016 GLC 72.3374 41.4850 Kyrgyzstan Rainfall
20 Jun 2016 GLC 73.5233 40.1293  Kyrgyzstan  Rainfall
27 Jun 2016 GLC 74.4438 41.7246  Kyrgyzstan  Rainfall
29 Jun 2016 GLC 73.1415 41.7649 Kyrgyzstan Not detected

https://doi.org/10.5194/nhess-21-2125-2021

Nat. Hazards Earth Syst. Sci., 21, 2125-2144, 2021



2140

Table Al. Continued.
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Event date Source  Longitude Latitude Country Trigger

29 Jul 2016 GLC 69.5597 39.9377 Kyrgyzstan  Rainfall

16 Aug 2016 GLC 78.3019 42.6831 Kyrgyzstan  Not detected
18 Aug 2016 GLC 70.5626  39.9790 Tajikistan Rainfall

4 Jan 2017 GLC 71.9999 39.6699  Kyrgyzstan  Snowmelt
26 Jan 2017 GLC 72.8834 40.8960  Kyrgyzstan  Not detected
26 Mar 2017  GFLD 73.5725 40.8316  Kyrgyzstan Mixed

7 Apr 2017 GLC 73.6257 40.7733  Kyrgyzstan  Snowmelt

9 Apr 2017 GLC 73.5335 40.8320  Kyrgyzstan ~ Snowmelt
10 Apr2017  GLC 69.5091 39.9095 Kyrgyzstan Mixed

11 Apr2017 GLC 72.8601 41.2047 Kyrgyzstan Mixed

14 Apr2017  GFLD 73.5725 40.8316  Kyrgyzstan Mixed

16 Apr2017  GLC 73.2668 40.6430 Kyrgyzstan  Snowmelt
16 Apr2017  GLC 73.6000 40.7836  Kyrgyzstan  Snowmelt
17 Apr2017  GLC 73.6047 40.8044  Kyrgyzstan  Mixed

18 Apr2017  GLC 71.4973 37.3628  Tajikistan Mixed

18 Apr2017  GLC 72.9069 40.8838  Kyrgyzstan  Rainfall

22 Apr2017  GLC 73.3402 40.8663  Kyrgyzstan Mixed

23 Apr2017 GLC 71.5074 39.3410  Tajikistan Snowmelt
23 Apr2017 GLC 72.8835 41.1610 Kyrgyzstan  Rainfall

23 Apr2017  GFLD 72.9801 41.2790 Kyrgyzstan Mixed

29 Apr2017 GLC 73.4724 40.8864  Kyrgyzstan Mixed

29 Apr2017  GFLD 73.2203 40.1325 Kyrgyzstan Mixed

30 Apr2017  GLC 72.4381 41.2550 Kyrgyzstan  Rainfall

30 Apr2017  GLC 73.5310 40.0774 Kyrgyzstan Mixed

10 May 2017 GLC 74.4847 425635 Kyrgyzstan Mixed

11 May 2017 GLC 73.3497 40.5560  Kyrgyzstan  Rainfall

16 May 2017 GLC 71.0302 41.7545 Kyrgyzstan Rainfall

17 May 2017 GLC 72.6771 41.6014 Kyrgyzstan Rainfall

28 May 2017 GLC 71.2755 39.1978  Tajikistan Mixed

19 Jun 2017 GLC 72.9814 39.6978  Kyrgyzstan Mixed

19 Jun 2017 GLC 71.7318 40.0439  Kyrgyzstan  Rainfall

26 Jun 2017 GLC 67.8173 39.5267  Tajikistan Rainfall

28 Jun 2017 GLC 68.5480 39.3951  Tajikistan Not detected
29 Jun 2017 GLC 72.7303 41.0321 Kyrgyzstan Rainfall

29 Jun 2017 GLC 72.4521 41.2557 Kyrgyzstan  Rainfall

3 Jul 2017 GLC 70.3650  39.0219  Tajikistan Rainfall

3 Jul 2017 GLC 68.4838 39.1172  Tajikistan Not detected
4 Jul 2017 GLC 69.5279 39.8102 Kyrgyzstan  Not detected
13 May 2018 GLC 69.5445 39.8526  Kyrgyzstan  Rainfall

16 May 2018 GLC 69.1773 37.2642  Tajikistan Rainfall

21 May 2018 GLC 72.1386 40.2437  Kyrgyzstan Mixed
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Table A2. K -fold validation results. Mean values and standard deviations (in parentheses) for thresholds of Ipean (mm d_l), Imax (mmd™ 1 ),
and Q (mm) for entire events of rainfall, snowmelt, and the sum of rainfall and snowmelt (rainfall + snowmelt), as well as corresponding

performance statistics.

Predictor Property Threshold HR FAR d PSS AUC
Rainfall Imean 3.76 (0.33) 0.56(0.14) 0.33(0.03) 0.56(0.10) 0.23(0.13) 0.62 (0.01)
Imax 11.06 (0.66) 0.46 (0.16) 0.18 (0.02) 0.57 (0.15) 0.28 (0.15) 0.65 (0.01)
(0] 12.31(3.88) 0.53(0.16) 0.25(0.07) 0.55(0.10) 0.27 (0.10) 0.67 (0.01)
Snowmelt Imean 7.06(0.02) 0.22(0.14) 0.06(0.01) 0.78(0.14) 0.16(0.14) 0.31 (0.02)
Imax 13.61 (0.44) 0.23(0.13) 0.04 (0.01) 0.77 (0.13) 0.19(0.12) 0.32(0.01)
Q 122.38 (7.93) 0.23(0.13) 0.03(0.01) 0.77 (0.13) 0.20(0.12) 0.33 (0.01)
Rainfall + snowmelt  Iean 4.96 (0.02) 0.70(0.13) 0.25(0.02) 0.40(0.08) 0.45(0.14) 0.78 (0.01)
Imax 12.93 (0.37) 0.65(0.15) 0.15(0.01) 0.39(0.13) 0.49 (0.15) 0.81(0.01)
(0] 17.20 (0.14) 0.71 (0.15) 0.23(0.02) 0.38 (0.10) 0.48 (0.13) 0.81 (0.01)

Table A3. K -fold validation results. Mean values and standard deviations (in parentheses) for thresholds of Ipean (mm d-! ), Imax (mmd™ 1 ),
and Q (mm) for UTL events of rainfall, snowmelt, and the sum of rainfall and snowmelt (rainfall 4+ snowmelt), as well as corresponding

performance statistics.

Predictor Property Threshold HR FAR d PSS AUC
Rainfall I'mean 4.04(1.47) 0.45(0.13) 0.33(0.10) 0.66(0.08) 0.12(0.08) 0.59 (0.01)
Imax 10.94 (1.47)  0.34 (0.06) 0.18 (0.04) 0.68 (0.05) 0.16 (0.06) 0.58 (0.01)
0 10.21 (2.22) 0.46(0.09) 0.29 (0.04) 0.62(0.09) 0.17 (0.11) 0.59 (0.01)
Snowmelt Imean 7.14(0.26) 0.21 (0.10) 0.06 (0.02) 0.79(0.10) 0.15(0.09) 0.31(0.02)
I'max 12.88(0.23) 0.23(0.12) 0.05(0.01) 0.77(0.12) 0.18(0.11) 0.32(0.02)
0 99.95 (4.67) 0.22(0.13) 0.04(0.01) 0.78(0.13) 0.18 (0.13) 0.32 (0.02)
Rainfall + snowmelt  Imean 5.35(0.85) 0.61(0.22) 0.23(0.04) 0.47(0.17) 0.38(0.18) 0.76 (0.01)
Imax 13.54 (0.56) 0.56 (0.15) 0.14(0.01) 0.47(0.14) 0.42(0.14) 0.77 (0.01)
0 15.83(0.44) 0.63(0.13) 0.25(0.02) 0.45(0.10) 0.38(0.12) 0.76 (0.01)
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Code and data availability. The landslide data and atmospheric
data used in this study are freely available from the following links:

— Global Landslide Catalog: https://maps.nccs.nasa.gov/arcgis/

home/item.html?id=eec7aee8d2e040c7b8d3ee5fd0e0d7b9
(NASA, 2021)

— Global Fatal Landslide Database:  https://shefuni.
maps.arcgis.com/apps/webappviewer/index.html?id=
8458951270904£c29527254492517063 (UOS, 2021)

— High Asia Refined Analysis version 2: https://www.klima.
tu-berlin.de/HARv2 (TUB, 2021).

The source code used in this study is freely available upon request.
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