Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Volume 15, issue 4
Nat. Hazards Earth Syst. Sci., 15, 735–746, 2015
https://doi.org/10.5194/nhess-15-735-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Nat. Hazards Earth Syst. Sci., 15, 735–746, 2015
https://doi.org/10.5194/nhess-15-735-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 07 Apr 2015

Research article | 07 Apr 2015

A comparative assessment of two different debris flow propagation approaches – blind simulations on a real debris flow event

L. M. Stancanelli and E. Foti

Related authors

Investigation of suitable sites for wave energy converters around Sicily (Italy)
C. Iuppa, L. Cavallaro, D. Vicinanza, and E. Foti
Ocean Sci., 11, 543–557, https://doi.org/10.5194/os-11-543-2015,https://doi.org/10.5194/os-11-543-2015, 2015
Short summary

Related subject area

Landslides and Debris Flows Hazards
Timing, drivers and impacts of the historic Masiere di Vedana rock avalanche (Belluno Dolomites, NE Italy)
Sandro Rossato, Susan Ivy-Ochs, Silvana Martin, Alfio Viganò, Christof Vockenhuber, Manuel Rigo, Giovanni Monegato, Marco De Zorzi, Nicola Surian, Paolo Campedel, and Paolo Mozzi
Nat. Hazards Earth Syst. Sci., 20, 2157–2174, https://doi.org/10.5194/nhess-20-2157-2020,https://doi.org/10.5194/nhess-20-2157-2020, 2020
Short summary
Sensitivity and identifiability of rheological parameters in debris flow modeling
Gerardo Zegers, Pablo A. Mendoza, Alex Garces, and Santiago Montserrat
Nat. Hazards Earth Syst. Sci., 20, 1919–1930, https://doi.org/10.5194/nhess-20-1919-2020,https://doi.org/10.5194/nhess-20-1919-2020, 2020
Short summary
Assessing the annual risk of vehicles being hit by a rainfall-induced landslide: a case study on Kennedy Road in Wan Chai, Hong Kong
Meng Lu, Jie Zhang, Lulu Zhang, and Limin Zhang
Nat. Hazards Earth Syst. Sci., 20, 1833–1846, https://doi.org/10.5194/nhess-20-1833-2020,https://doi.org/10.5194/nhess-20-1833-2020, 2020
Short summary
Topographic uncertainty quantification for flow-like landslide models via stochastic simulations
Hu Zhao and Julia Kowalski
Nat. Hazards Earth Syst. Sci., 20, 1441–1461, https://doi.org/10.5194/nhess-20-1441-2020,https://doi.org/10.5194/nhess-20-1441-2020, 2020
Short summary
Geo-climatic hazards in the eastern subtropical Andes: distribution, climate drivers and trends
Iván Vergara, Stella M. Moreiras, Diego Araneo, and René Garreaud
Nat. Hazards Earth Syst. Sci., 20, 1353–1367, https://doi.org/10.5194/nhess-20-1353-2020,https://doi.org/10.5194/nhess-20-1353-2020, 2020
Short summary

Cited articles

Arattano, M. and Marchi, L.: Measurements of debris flow velocity through cross-correlation of instrumentation data, Nat. Hazards Earth Syst. Sci., 5, 137–142, https://doi.org/10.5194/nhess-5-137-2005, 2005.
Armanini, A., Fraccarollo, L., and Rosatti, G.: Two-dimensional simulation of debris flows in erodible channels, Comput. Geosci., 35, 5, 993–1006, 2009.
Armento, M.C., Genevois, R., and Tecca, P.R.: Comparison of numerical models of two debris flows in the Cortina d'Ampezzo area, Dolomites, Italy, Landslides, 5, 143–150, 2008.
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, P. Roy. Soc. Lond. A, 225, 1160, 49–63, 1954.
Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration, J. Geophys. Res., 115, F03013, https://doi.org/10.1029/2009JF001321, 2010.
Publications Copernicus
Download
Short summary
The performances of a mono-phase model and of a two-phase model have been evaluated carrying out a blind test. As a benchmark test the event that struck Sicily (2009) was chosen. Prediction accuracies have been evaluated determining statistical indicators and applying the ROC approach. For the simulated event the two-phase model is more accurate than the mono-phase one, though both models show limits when applied in a highly urbanized area, where some constrains cannot be properly reproduced.
The performances of a mono-phase model and of a two-phase model have been evaluated carrying out...
Citation
Altmetrics
Final-revised paper
Preprint