Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1769-2021
https://doi.org/10.5194/nhess-21-1769-2021
Research article
 | 
03 Jun 2021
Research article |  | 03 Jun 2021

Uncertainty analysis of a rainfall threshold estimate for stony debris flow based on the backward dynamical approach

Marta Martinengo, Daniel Zugliani, and Giorgio Rosatti

Related authors

ISeeSnow v1.0 – a pilot study for snow avalanche model intercomparison of thickness-integrated shallow flow approaches and beyond
Anna Wirbel, Felix Oesterle, Guillaume Chambon, Thierry Faug, Johan Gaume, Julia Glaus, Stefan Hergarten, Dieter Issler, Yoichi Ito, Marco Martini, Martin Mergili, Matthias Rauter, Jörg Robl, Giorgio Rosatti, Kae Tsunematsu, Christian Tollinger, Hervé Vicari, Daniel Zugliani, and Jan-Thomas Fischer
EGUsphere, https://doi.org/10.5194/egusphere-2025-6053,https://doi.org/10.5194/egusphere-2025-6053, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary

Cited articles

Abdi, H.: Coefficient of variation, Encyclopedia of Research Design, 1, 169–171, 2010. a
Abraham, M. T., Satyam, N., Rosi, A., Pradhan, B., and Segoni, S.: The Selection of Rain Gauges and Rainfall Parameters in Estimating Intensity-Duration Thresholds for Landslide Occurrence: Case Study from Wayanad (India), Water-SUI, 12, 1000, https://doi.org/10.3390/w12041000, 2020. a
Arachchige, C. N., Prendergast, L. A., and Staudte, R. G.: Robust analogs to the coefficient of variation, J. Appl. Stat., https://doi.org/10.1080/02664763.2020.1808599, in press, 2020. a
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, 2010. a
Bendel, R., Higgins, S., Teberg, J., and Pyke, D.: Comparison of skewness coefficient, coefficient of variation, and Gini coefficient as inequality measures within populations, Oecologia, 78, 394–400, 1989. a
Download
Short summary
Rainfall thresholds are relations between rainfall intensity and duration on which the forecast of the possible occurrence of a debris flow can be based. To check the robustness of a physically based stony debris flow rainfall threshold, in this work we developed a procedure to estimate the effects of various sources of error on the determination of the threshold parameters. Results show that these effects are limited and therefore show the good robustness of the threshold estimate.
Share
Altmetrics
Final-revised paper
Preprint