Articles | Volume 24, issue 11
https://doi.org/10.5194/nhess-24-3991-2024
https://doi.org/10.5194/nhess-24-3991-2024
Research article
 | 
25 Nov 2024
Research article |  | 25 Nov 2024

Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area

Bo Peng and Xueling Wu

Related authors

PM2.5 ∕ PM10 ratio prediction based on a long short-term memory neural network in Wuhan, China
Xueling Wu, Ying Wang, Siyuan He, and Zhongfang Wu
Geosci. Model Dev., 13, 1499–1511, https://doi.org/10.5194/gmd-13-1499-2020,https://doi.org/10.5194/gmd-13-1499-2020, 2020
Short summary

Related subject area

Landslides and Debris Flows Hazards
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024,https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024,https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024,https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary

Cited articles

Abraham, M. T., Pothuraju, D., and Satyam, N.: Rainfall Thresholds for Prediction of Landslides in Idukki, India: An Empirical Approach, Water, 11, 2113, https://doi.org/10.3390/w11102113, 2019. 
Abraham, M. T., Satyam, N., Pradhan, B., and Alamri, A. M.: Forecasting of Landslides Using Rainfall Severity and Soil Wetness: A Probabilistic Approach for Darjeeling Himalayas, Water, 12, 804, https://doi.org/10.3390/w12030804, 2020a. 
Abraham, M. T., Satyam, N., Kushal, S., Rosi, A., Pradhan, B., and Segoni, S.: Rainfall Threshold Estimation and Landslide Forecasting for Kalimpong, India Using SIGMA Model, Water, 12, 1195, https://doi.org/10.3390/w12041195, 2020b. 
Aksha, S. K., Resler, L. M., Juran, L., and Carstensen, L. W.: A geospatial analysis of multi-hazard risk in Dharan, Nepal, Geomat. Nat. Haz. Risk, 11, 88–111, https://doi.org/10.1080/19475705.2019.1710580, 2020. 
Baharvand, S., Rahnamarad, J., Soori, S., and Saadatkhah, N.: Landslide susceptibility zoning in a catchment of Zagros Mountains using fuzzy logic and GIS, Environ. Earth Sci., 79, 204, https://doi.org/10.1007/s12665-020-08957-w, 2020. 
Download
Short summary
Our research enhances landslide prevention using advanced machine learning to forecast heavy-rainfall-triggered landslides. By analyzing regions and employing various models, we identified optimal ways to predict high-risk rainfall events. Integrating multiple factors and models, including a neural network, significantly improves landslide predictions. Real data validation confirms our approach's reliability, aiding communities in mitigating landslide impacts and safeguarding lives and property.
Altmetrics
Final-revised paper
Preprint