
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, 2024
https://doi.org/10.5194/nhess-24-3991-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.

Optimizing rainfall-triggered landslide thresholds for daily
landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

Correspondence: Xueling Wu (wuxl@cug.edu.cn)

Received: 7 June 2024 – Discussion started: 19 July 2024
Revised: 5 September 2024 – Accepted: 23 September 2024 – Published: 25 November 2024

Abstract. Rainfall is intrinsically linked to the occurrence
of landslide catastrophes. Identifying the most suitable rain-
fall threshold model for an area is crucial for establishing
effective daily landslide hazard warnings, which are essen-
tial for the precise prevention and management of local land-
slides. This study introduces a novel approach that utilizes
multilayer perceptron (MLP) regression to calculate rainfall
thresholds for 453 rainfall-induced landslides. This research
represents the first attempt to integrate MLP and ordinary
least squares methods for determining the optimal rainfall
threshold model tailored to distinct subregions, categorized
by topographical and climatic conditions. Additionally, an
innovative application of a three-dimensional convolutional
neural network (CNN-3D) model is introduced to enhance
the accuracy of landslide susceptibility predictions. Finally, a
comprehensive methodology is developed to integrate daily
rainfall warning levels with landslide susceptibility predic-
tions using a superposition matrix, thus offering daily land-
slide hazard warning results for the study area. The key find-
ings of this study are as follows. (1) The optimal rainfall
threshold models and calculation methods vary across dif-
ferent subregions, underscoring the necessity for tailored ap-
proaches. (2) The CNN-3D model substantially improves the
accuracy of landslide susceptibility predictions. (3) The daily
landslide hazard warnings were validated using anticipated
rainfall data from 19 July 2020, thereby demonstrating the
reliability of both the landslide hazard warning results and
the rainfall threshold model. This study presents a substan-
tial advancement in the precise prediction and management
of landslide hazards by employing innovative modeling tech-
niques.

1 Introduction

According to the China Statistical Yearbook, landslides ac-
counted for 71.55 % of geological disasters in China between
2005 and 2021 (http://www.stats.gov.cn/sj/ndsj/, last access:
10 October 2023). Frequent landslides pose significant risks
to both lives and property (Xing et al., 2021). Rainfall trig-
gers landslides by altering pore pressure in the soil (Zhao et
al., 2022) and reducing the shear strength of the geotechnical
materials (Chan et al., 2018). Research indicates that rainfall
is intrinsically linked to the majority of landslide deforma-
tions and instabilities (Marin et al., 2020; Yuniawan et al.,
2022). Therefore, it is crucial to delineate the rainfall thresh-
olds for various conditions and regions to improve landslide
hazard warnings and disaster prevention efforts. Landslide
hazard warning is described as the conditional prediction
of the temporal and spatial probabilities of landslide occur-
rence based on triggering and inducing factors (Budimir et
al., 2015). In this study, the rainfall warning level (i.e., the
temporal probability of landslide occurrence) derived from
the rainfall threshold model serves as the triggering factor,
while the landslide susceptibility predictions (i.e., the spatial
probability of occurrence) act as the inducing factor.

Landslide susceptibility reflects the spatial probability of
landslide occurrence (Huang et al., 2022b). Methods for pre-
dicting landslide susceptibility include general linear mod-
els (Aksha et al., 2020), information value models (Yu et al.,
2022), and various machine learning models. Machine learn-
ing models are more effective than other types in capturing
and predicting the nonlinear relationships between landslide
susceptibility and predisposing factors (Guo et al., 2021).
Commonly used machine learning models include logistic
regression (Baharvand et al., 2020), artificial neural networks
(Jiang et al., 2014), support vector machines (SVMs) (Zhu
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and Hu, 2013; Chang et al., 2023), random forest (RF) (Chen
et al., 2014; Huang et al., 2024), Bayesian algorithms (He et
al., 2019), and deep learning algorithms (Huang et al., 2020).
However, selecting the most suitable model for landslide
susceptibility prediction remains challenging, and significant
uncertainty exists in the results obtained from different ma-
chine learning models (Xia et al., 2020). Even small im-
provements in prediction accuracy can significantly impact
landslide susceptibility zoning (Chen et al., 2018). Therefore,
to reduce uncertainty in landslide susceptibility results, mul-
tiple susceptibility models are often applied, and the model
with the highest accuracy is selected for the study area.

Rainfall threshold modeling approaches primarily include
deterministic methods based on physical and hydrological
models, as well as empirical methods based on landslide cat-
aloguing and rainfall event statistics (Wu et al., 2015; Chung
et al., 2017). Deterministic methods establish the relationship
between rainfall and landslide stability through dynamic hy-
drological models and determine the critical rainfall thresh-
old for landslide instability (Ciurleo et al., 2019). However,
due to the challenges of accurately obtaining hydrological
and geotechnical parameters on a large scale, this method
is primarily applicable to smaller study areas (Wu and Yeh,
2020). Empirical methods are mainly derived by calculat-
ing the relationship between historical landslide and rainfall
data (Pradhan et al., 2019; Abraham et al., 2020b). This ap-
proach is widely used due to its advantages in data acqui-
sition convenience, applicability, and effectiveness (Marti-
novic et al., 2018). Commonly used rainfall threshold mod-
els include the intensity and duration (I–D) threshold model
(Lee et al., 2014; Abraham et al., 2019) and the effective rain-
fall and duration of rainfall (E–D) threshold model (Peruc-
cacci et al., 2017; Abraham et al., 2020a). Regression meth-
ods used to calculate the rainfall threshold model include lo-
gistic regression (Mathew et al., 2014), ordinary least squares
(OLS) regression (Rossi et al., 2017), and quantile regres-
sion (Salee et al., 2022). The applicability of various rainfall
threshold models and regression methods differs across re-
gions (Segoni et al., 2018; Marin, 2020). Therefore, to reduce
uncertainty in landslide hazard warnings, multiple regression
methods and rainfall threshold models should be employed to
determine the most appropriate threshold for a specific loca-
tion.

Given that many researchers have employed the log–log
coordinate system for regression analysis of rainfall thresh-
old models (He et al., 2020), this study proposes to use of
the multilayer perceptron (MLP) regression method to exam-
ine rainfall thresholds under various rainfall durations. Ad-
ditionally, the third-dimension indicator, daily rainfall (R),
was incorporated to develop the E–D–R rainfall threshold
model, extending the E–D rainfall threshold model (Liu et
al., 2022).

In this study, the Three Gorges Reservoir area was selected
as the study area. Landslides were catalogued to obtain the E
andD data for the 5 d preceding each landslide, as well as the

Figure 1. Flowchart of this study.

R data at the time of the landslides. Subsequently, the rain-
fall thresholds corresponding to the E–D and E–D–R mod-
els for varying landslide occurrence probabilities were cal-
culated using both OLS and MLP regression methods. The
study aims to explore the optimal rainfall threshold model
for the study area, assess the feasibility of neural networks
in rainfall threshold modeling, and categorize rainfall warn-
ing levels based on the optimal model. Landslide-inducing
factors were selected, and landslide susceptibility was pre-
dicted using RF, SVM, and 3D convolutional neural network
(CNN-3D) models. The most accurate susceptibility results
were used as the spatial probability of landslide occurrence
in the study area. Finally, the daily rainfall warning level was
combined with the landslide susceptibility results using a su-
perposition matrix to generate daily landslide hazard warn-
ings, providing a reference for the precise prevention and
management of local landslide disasters. The study flowchart
is shown in Fig. 1.

2 Methods

2.1 Rainfall threshold model

2.1.1 OLS regression

OLS regression is a widely used linear regression technique
for establishing a linear relationship between an independent
variable (x) and a dependent variable (y). It minimizes the
difference between the predicted and observed value by find-
ing the slope and intercept that best fit the data (Lim et al.,
2023).
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The basic form of the OLS regression model is expressed
as

y = β0+
∑n

i=1
βixi, (1)

where y denotes the dependent variable, xi denotes the in-
dependent variable, n denotes the number of independent
variables, βi denotes the coefficients of the independent vari-
ables, and β0 denotes the constant intercept.

2.1.2 MLP regression

MLP is a commonly used neural network capable of non-
linear mapping, enabling it to learn complex nonlinear func-
tional relationships through multiple layers of nodes. It has
been widely applied in various fields, including geospatial
analysis (Hasan et al., 2023; X. B. Wang et al., 2023), aero-
dynamics (Barcenas et al., 2023), atmospheric science (Hoff-
man and Jasinski, 2023), rainfall prediction (Narimani et al.,
2023), and image fusion (Mei et al., 2023). In regression
analysis of scatter data, a scatter data set is treated as a collec-
tion of input–output data pairs. The model adjusts its weights
by minimizing the error between predicted and actual data,
ultimately achieving accurate regression.

2.1.3 E–D–R rainfall threshold model

The E–D–R rainfall threshold model builds upon the E–D
rainfall threshold model by introducing the R metric as a
third dimension to optimize the original model. To analyze
the E–D–R rainfall threshold model, it is essential first to
establish the E–D rainfall threshold model.

The E–D rainfall threshold model examines the relation-
ship between effective rainfall and the duration of rainfall
(Teja et al., 2019). The scatter plot is typically analyzed using
regression in a log–log coordinate system, with the resulting
fitted line then transformed into a Cartesian coordinate sys-
tem. The expression for this is

E = α×Dβ . (2)

Assume the linear equation fitted in the log–log coordinate
system has an intercept of b and a slope of a. Then, in this
context, α = 10b; β = a, where D denotes the duration of
rainfall (in days); and E is the effective rainfall (in mm), de-
fined as the total rainfall that infiltrates and impacts the land-
slide, excluding slope runoff and evaporation (Huang et al.,
2022a). The effective rainfall formula applied in this study is

E =
∑n

i=1
ki−1Ei, (3)

where E denotes the effective rainfall, Ei is the rainfall on
the previous i days, and k is the effective rainfall coefficient,
typically set to 0.8 (Huang et al., 2022a). Additionally, it has
been demonstrated that effective rainfall within the first 5 d in
the Three Gorges Reservoir area is strongly correlated with
landslide events (Zhou et al., 2022). Therefore, the number

of days n considered for rainfall statistics in this study is set
to 5.

The indicator R is introduced as a third dimension to ex-
tend the E–D rainfall threshold model from two to three di-
mensions, resulting in a model that satisfies the following
relational equation:

T =max {GE,GR} , (4)

where T denotes the final rainfall warning level, while GE
andGR denote the rainfall warning levels for theE–D model
and R dimension, respectively.

2.2 CNN-3D model

A convolutional neural network (CNN) is a deep learning al-
gorithm extensively utilized in image recognition (Fan et al.,
2022; Gill et al., 2022), natural language processing (Jin et
al., 2023; Kaliyar et al., 2021), and various other domains.
The core principle of CNN involves extracting features from
input data through convolution operations (Youssef et al.,
2022). However, in one- and two-dimensional CNNs, feature
extraction for induced factor data is typically performed at
a single raster point. Both methods overlook the spatial in-
formation surrounding the raster points (Yang et al., 2022).
Consequently, this study introduces CNN-3D to fully lever-
age the rich spatial information surrounding raster points,
thereby enhancing the prediction accuracy of landslide sus-
ceptibility. The structure of CNN-3D mirrors that of tradi-
tional CNN, but due to the inclusion of additional spatial
data, CNN-3D can yield more accurate results (Liu et al.,
2023).

A three-dimensional structure was selected to generate
samples in this experiment. Prior to sample generation, an
n-channel image is created by superimposing n components.
Each pixel is then extended outward by 7 pixels, resulting in
a 15× 15× n image used as input. Subsequently, high-level
features are mapped to a low-dimensional space through op-
erations such as convolution and pooling in the hidden layer,
and these features are then stored in the neural units of the
fully connected layer. Finally, classification is performed us-
ing the softmax function to determine landslide and non-
landslide outcomes.

3 Overview of the study area

3.1 Physical and geographical characteristics

The study area is located in the upper reaches of the
Yangtze River, extending from Sandouping in Yichang city
to Jiangjin District in Chongqing. It lies between longitudes
105°50′ and 111°42′ E and latitudes 28°30′ and 31°45′ N
(Cheng et al., 2022). This area encompasses 29 adminis-
trative districts and counties, including 7 in Hubei Province
and 22 in Chongqing municipality, covering a total area of
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5.67× 104 km2 (Fig. 2).The region experiences a subtropical
monsoon climate, with average annual precipitation ranging
from 445 to 1813 mm (Long et al., 2021). The abundant rain-
fall in the region is a significant factor contributing to land-
slide occurrences (Guo et al., 2022).

3.2 Landslide data cataloguing and study area
subdivision

Cataloging landslide data is crucial for studying rainfall
thresholds (Gariano et al., 2021). This process involves
recording essential information, including the time of oc-
currence, geographic location, and associated rainfall sta-
tions for each landslide event. The historical landslide data
used in this study were provided by the Wuhan Geological
Survey Center (http://www.wuhan.cgs.gov.cn/, last access: 3
June 2023). To identify the corresponding rainfall stations
for each historical landslide, the Thiessen polygon method
was employed to match each landslide point with the near-
est rainfall station (Zhao et al., 2019), thereby obtaining the
pre-landslide rainfall data (see Fig. 2, Thiessen polygons).

After filtering and cleaning, a total of 453 historical land-
slides with accurate rainfall information, dates, and locations
were identified (see Fig. 2, landslides). Historical rainfall
data indicate that precipitation in the study area is primarily
concentrated between May and October. The differing cli-
matic conditions between the dry and rainy seasons may lead
to varying impacts of rainfall on landslide movements (So-
ralump et al., 2021). Based on this information, the historical
landslides were classified into rainy season and dry season
landslides according to their occurrence times (Fig. 3b).

Given the substantial influence of geomorphological, ge-
ological, and climatic conditions on landslide triggers dur-
ing the rainy season (Dahal and Hasegawa, 2008), rainfall
thresholds can vary across different regions. Accordingly,
this study further subdivided the landslide data from the rainy
season. The study area was divided into several subregions
based on terrain and climatic conditions, with rainfall thresh-
olds calculated for each region. However, due to the limited
historical landslide data in regions Z21, Z22, Z23, Z3, and Z4,
adjacent regions were merged to mitigate potential inaccura-
cies in rainfall threshold calculations caused by insufficient
data. Specifically, Z21 and Z22 were combined; Z23, Z24, and
Z3 were combined; and Z25 and Z4 were combined. The final
regional subdivision is illustrated in Fig. 3a. For dry season
landslides, due to relatively uniform rainfall and the small
number of events, no further subdivision was performed, and
the rainfall threshold was calculated for the entire study area.

4 Results

4.1 Rainfall threshold model results

4.1.1 E–D rainfall threshold model

Rainfall-triggered landslides are rare and probabilistic
events. Relying solely on the minimum threshold for geo-
logical hazard warnings can result in numerous ineffective
warnings (i.e., false-positive error) (Sarkar et al., 2023). This
not only diminishes public trust in disaster warning, but also
leads to wasted resources on preventive and control activ-
ities, impeding progress in disaster prevention and mitiga-
tion. Consequently, most current studies on rainfall threshold
models utilize various threshold curves with different land-
slide probabilities (Sheng et al., 2022) to enhance the relia-
bility and accuracy of rainfall warnings. Typically, landslide
probability refers to the proportion of landslides triggered by
rainfall exceeding a specified threshold relative to the total
number of landslides (Yang et al., 2020).

For OLS regression calculation, the E and D data from
historical landslide hazard locations were initially plotted
in the E–D log–log coordinate system. The 50 % landslide
probability rainfall threshold curve was then derived by fit-
ting these data using OLS regression. The fitted curves were
subsequently employed to perform OLS regression analy-
sis on historical landslide hazard points above and below
these curves, resulting in the 75 % and 25 % landslide prob-
ability rainfall threshold curves (Fig. 4). Finally, the straight
lines from the log–log coordinate system were converted into
curves in the Cartesian coordinate system (Table 1).

In the MLP regression analysis, the rainfall thresholds for
a 50 % landslide probability were initially fitted separately
for each duration of rainfall (D). MLP regression was then
applied to historical landslide data above and below these
thresholds to determine the rainfall thresholds for 75 % and
25 % landslide probabilities for each D. Limited historical
landslide data for a D of 1 in some regions (e.g., Z12) and
insufficient data for a D of 5 in other regions (e.g., Z11) may
lead to inaccuracies in the fitted rainfall thresholds. To ad-
dress this issue, Gaussian regression (Kumar and Kavitha,
2021) and the GM(1,1) gray prediction model (Chen and
Huang, 2013) were employed to correct the rainfall thresh-
olds derived from MLP regression. The corrected results are
shown in Fig. 5 and Table 2.

The threshold curves derived from OLS regression in the
log–log coordinate system typically display an upward trend,
as illustrated in Fig. 4, with the slopes of the rainfall thresh-
old curves for 25 %, 50 %, and 75 % landslide probabili-
ties decreasing progressively. As shown in Fig. 5, the rain-
fall thresholds obtained from MLP regression for various
landslide probabilities generally exhibit an increasing trend.
However, the limited historical landslide data in some subre-
gions leads to less accurate rainfall thresholds (e.g., the rain-
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Figure 2. Geographic location of the study area and Thiessen polygon results for rainfall stations.

Figure 3. Zoning map of the study area. (a) Schematic diagram of the subregion merger; (b) number of historical landslide hazard sites in
each subregion.
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Figure 4. E–D rainfall threshold model results plotted in the log–log coordinate system using OLS regression. In the figure, regions are
labeled as follows: panel (a) represents the Z11 region, panel (b) represents the Z12 region, panel (c) represents the Z13 region, panel (d)
represents the Z21Z22 region, panel (e) represents the Z23Z24Z3 region, panel (f) represents the Z25Z4 region, and panel (g) represents the
dry season.

fall threshold for the Z23Z24Z3 region shows a large increase
when D is 5).

4.1.2 E–D–R rainfall threshold model

Building on the E–D rainfall threshold model, the third-
dimension indicator R was incorporated to develop the E–
D–R rainfall threshold model. In this model, the value ofR is
set to the rainfall threshold corresponding to a duration of D
equal to 1 in the E–D rainfall threshold model. These three
indicators collectively form a closed “box” (Fig. 6), demon-
strating nested relationships among different landslide prob-
ability levels.

4.1.3 Model accuracy verification

The accuracy of the model was evaluated using 82 landslide
hazard events from 2019 and 2020 that were not included
in the rainfall threshold model calculations. Figure 7 shows
the distribution of landslide hazard events across different re-
gions.

In practical landslide prevention, real-time future rainfall
data are unavailable and must be substituted with forecasted
rainfall. To enhance the realism of the validation data for the
rainfall threshold model, this study used numerous rainfall
forecast stations within the study area to gather forecasted
rainfall amounts for the 82 landslide events on the day of
occurrence and for the 5 d prior. Notably, the rainfall fore-
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Table 1. E–D rainfall threshold equation derived from OLS regression.

Region Landslide Equations E–D
probability (log–log coordinate system) equation

Z11 75 % y = 0.4383×+1.4679 E = 29.3697×D0.4383

50 % y = 1.2420×+0.7552 E = 5.6912×D1.2420

25 % y =2.6894×−0.4164 E = 0.3834×D2.6894

Z12 75 % y = 0.6981×+1.3464 E = 22.2024×D0.6981

50 % y = 0.9113×+0.8721 E = 7.4490×D0.9113

25 % y = 1.8193×+0.0102 E = 1.0238×D1.8193

Z13 75 % y = 1.0019×+1.1887 E = 15.4419×D1.0019

50 % y = 1.4792×+0.6246 E = 4.2131×D1.4792

25 % y = 1.8201×+0.0759 E = 1.1910×D1.8201

Z21Z22 75 % y = 0.9977×+1.2307 E = 17.0098×D0.9977

50 % y = 1.6825×+0.4075 E = 2.5556× D1.6825

25 % y = 1.7100×−0.0969 E = 0.8000× D1.7100

Z23Z24Z3 75 % y = 0.5633×+1.3125 E = 20.5353× D0.5633

50 % y = 1.7673×+0.2014 E = 1.5900× D1.7673

25 % y = 2.8230×−0.7986 E = 0.1590×D2.8230

Z25Z4 75 % y = 1.1974×+1.0675 E = 11.6815×D1.1974

50 % y = 1.4525×+0.6027 E = 4.0059×D1.4525

25 % y = 2.4652×−0.2305 E = 0.5882×D2.4652

Dry season 75 % y = 0.7295×+0.9706 E = 9.3454×D0.7295

50 % y = 2.1754×−0.1679 E = 0.6794×D2.1754

25 % y = 2.7079×−0.7646 E = 0.1719×D2.7079

cast stations used here were established later and differ from
the rainfall stations used in the landslide cataloguing (Fig. 2,
Rainfall Station). These forecast stations, covering the entire
study area at 0.05° intervals, provide real-time updates on
forecasted rainfall.

The study area was classified into four warning categories
based on the rainfall threshold results: “attention” (< 25 %),
“special attention” (25 %–50 %), “warning” (50 %–75 %),
and “severe warning” (≥ 75 %). Figure 8 presents the results
of the validation process for each region’s rainfall threshold
model categories. Additionally, Table 3 shows the proportion
of hazardous situations corresponding to the severe warning
and warning levels in the E–D–R rainfall threshold model
validation results.

The following conclusions can be drawn from analyz-
ing the prediction accuracy of the four categories of rainfall
threshold models.

1. The accuracy of the E–D–R rainfall threshold model,
as computed using both MLP regression and OLS re-
gression, significantly surpasses that of the compara-
ble E–D rainfall threshold model. With the inclusion
of the R indicator in the third dimension, the E–D–R
rainfall threshold model’s predictions no longer include
the attention warning level for all areas (except Z11).

Moreover, there has been an increase in the percentage
of hazard incidents classified under the warning and se-
vere warning categories across all regions. Compared to
the E–D model, the proportion of hazardous conditions
categorized as warning and severe warning in theE–D–
R rainfall threshold model increased from 41.46 % to
76.82 %, while the proportion for OLS regression rose
from 69.51 % to 91.46 %.

2. Although the prediction accuracies of the E–D–R rain-
fall threshold model vary slightly between MLP regres-
sion and OLS regression for each region, the overall
proportion of hazardous conditions in the warning and
severe warning levels remains similar.

3. Table 4 presents the optimal rainfall threshold model for
each region. The E–D–R models obtained from MLP
regression are identified as the optimal models for the
Z13 and Z23Z24Z3 regions, demonstrating the feasibility
of utilizing neural networks (MLP) for rainfall threshold
model research.
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Figure 5.E–D rainfall threshold model results plotted using MLP regression. In the figure, regions are labeled as follows: panel (a) represents
the Z11 region, panel (b) represents the Z12 region, panel (c) represents the Z13 region, panel (d) represents the Z21Z22 region, panel (e)
represents the Z23Z24Z3 region, panel (f) represents the Z25Z4 region, and panel (g) represents the dry season. The red, blue, and purple
points denote rainfall threshold values fitted for various landslide probabilities. Line segments are included solely for visual clarity and do
not convey any practical information.

4.2 Landslide susceptibility results

4.2.1 Landslide-inducing factor selection

Based on the research findings of previous scholars (Habu-
mugisha et al., 2022; Rohan et al., 2023; Chen et al., 2020;
Li et al., 2022; Chen et al., 2021; Li et al., 2020) and con-
sidering the specific conditions of the study area, this study
selected a total of 11 factors that potentially induce land-
slides. These factors include elevation, the normalized dif-
ference vegetation index (NDVI), the topographic wetness
index (TWI), road density, stratigraphic lithology, tectonic

density, river distance, slope, curvature, land cover, and slope
structure (Table 5).

Among these factors, slope structure refers to the relation-
ship between the slope aspect of the inclination of the rock
formation (Niu et al., 2014). Different types of slope struc-
tures can result in variations in landslide size and intensity.
Based on the slope gradient (σ ), slope direction (γ ), and in-
clination (α) and tendency (β) of the rock formation, slope
structures are classified into the following eight types (Ta-
ble 6).

Stratigraphic lithology data were obtained by vectoriz-
ing and classifying geological maps at a 1 : 200000 scale.

Nat. Hazards Earth Syst. Sci., 24, 3991–4013, 2024 https://doi.org/10.5194/nhess-24-3991-2024
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Table 2. E–D rainfall threshold derived from MLP regression.

Region Duration of 75 % threshold 50 % threshold 25 % threshold
rainfall (D) (mm) (mm) (mm)

Z11 1 14.2305 10.1800 1.9625
2 36.4914 23.3267 8.7024
3 63.5907 37.0893 18.6210
4 76.6291 41.7210 22.9260
5 103.0000 53.8090 32.6260

Z12 1 57.9690 2.4749 0.1550
2 59.6126 20.0312 6.8458
3 62.3002 38.0666 17.3107
4 61.0451 34.2639 14.1966
5 63.2107 36.7170 19.0748

Z13 1 10.8122 6.3897 1.9677
2 42.1870 26.1761 10.1656
3 66.7259 29.0723 11.5028
4 73.7542 48.4590 24.8502
5 87.3909 55.1944 31.0476

Z21Z22 1 24.2575 7.4117 1.1585
2 42.5658 15.8642 2.5160
3 67.0825 35.8785 9.5152
4 84.8807 47.0166 20.3769
5 102.6789 58.1546 18.9942

Z23Z24Z3 1 5.5210 1.0893 0.5702
2 33.3538 10.1252 3.7901
3 59.1386 25.2715 7.0353
4 57.8357 27.9044 10.4444
5 162.7467 87.5204 37.3694

Z25Z4 1 15.9482 8.6114 1.2742
2 29.2418 21.1900 10.4545
3 64.6284 29.0526 14.8209
4 73.3920 52.0651 20.0756
5 104.1990 70.4430 25.8100

Dry season 1 5.0503 0.6647 0.5818
2 15.7035 5.1495 1.6332
3 22.2420 10.8428 3.2452
4 30.0733 18.1523 10.2084
5 47.1948 33.3588 26.4428

Each lithology is associated with distinct pedogenic envi-
ronments, leading to variations in composition and stability,
which in turn influence landslide occurrence (Cobos-Mora et
al., 2023). In this study, the area was classified into four litho-
logical categories: carbonate, clastic, carbonate and clastic,
and igneous and metamorphic rocks. Furthermore, in large
study areas where tectonic features are highly intertwined,
the distance to tectonic structures becomes less relevant as a
correlating factor; instead, tectonic density should be consid-
ered (Wang et al., 2014).

To ensure the rational selection of landslide-inducing fac-
tors, Pearson correlation analysis was employed to examine
the degree of correlation among the selected factors (Zhang

et al., 2022) (Fig. 9). The correlation coefficient ranges from
−1 to 1, where values closer to 1 or −1 indicate a stronger
correlation between the variables, and values closer to 0 in-
dicate a weaker correlation (Cao et al., 2023).

As shown in Fig. 9, the correlation coefficients between
most inducing factors are low, with the exception of a some-
what higher correlation between elevation and river distance
(0.53). Elevation and river distance are both critical factors in
landslide occurrence, and elevation is fundamental to land-
slide susceptibility assessment (Z. Y. Wang et al., 2022), af-
fecting the distribution of submerged layers and the intensity
of human activities, while river erosion can destabilize slopes
by undercutting the base and softening rock and soil masses
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Figure 6. Schematic diagram of the E–D–R rainfall threshold
model illustrated using the OLS regression results from the Z13 re-
gion as an example. The green, yellow, and red boxes in the figure
represent landslide probabilities corresponding to rainfall thresh-
olds of < 25 %, 25 %–50%, and 50 %–75 %, respectively.

Figure 7. Number of landslide hazard events in each region of the
validation set.

(Selamat et al., 2022). Therefore, this study retains elevation
and river distance as two factors in the landslide sensitivity
assessment. Ultimately, 11 inducing factors were selected for
landslide susceptibility assessment in the study area.

4.2.2 Grading of landslide susceptibility factors

Considering the specific conditions of the study area and in-
sights from previous research, the classification of each land-
slide predisposing factor, along with the corresponding result
map, is presented in Table 7 and Fig. 10. The landslide sus-
ceptibility evaluation was conducted using raster cells with
dimensions of 30 m× 30 m. It is important to emphasize that

Table 3. Proportion of hazard events corresponding to the severe
warning and warning levels in the E–D–R rainfall threshold model
for each partitioned region.

Region Regression Level Percentage
approach (%)

Z11 MLP Severe warning 46.88
Warning 12.50

OLS Severe warning 40.63
Warning 40.63

Z12 MLP Severe warning 7.69
Warning 92.31

OLS Severe warning 53.85
Warning 46.15

Z13 MLP Severe warning 80.00
Warning 20.00

OLS Severe warning 60.00
Warning 40.00

Z21Z22 MLP Severe warning 44.44
Warning 33.33

OLS Severe warning 44.44
Warning 55.56

Z23Z24Z3 MLP Severe warning 33.33
Warning 66.67

OLS Severe warning 0.00
Warning 100.00

Z25Z4 MLP Severe warning 50.00
Warning 20.00

OLS Severe warning 70.00
Warning 30.00

Dry season MLP Severe warning 40.00
Warning 50.00

OLS Severe warning 60.00
Warning 30.00

Table 4. Optimal rainfall threshold model for each partitioned re-
gion.

Region Optimal rainfall threshold
modeling (regression approach)

Z11 E–D–R (OLS)
Z12 E–D–R (OLS)
Z13 E–D–R (MLP)
Z21Z22 E–D–R (OLS)
Z23Z24Z3 E–D–R (MLP)
Z25Z4 E–D–R (OLS)
Dry season E–D–R (OLS)
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Figure 8. Distribution of warning levels in the validation set for each partitioned region. Regions are labeled as follows: panel (a) represents
the Z11 region, panel (b) represents the Z12 region, panel (c) represents the Z13 region, panel (d) represents the Z21Z22 region, panel (e)
represents the Z23Z24Z3 region, panel (f) represents the Z25Z4 region, and panel (g) represents the dry season.

Table 5. Sources of data for landslide-inducing factors.

Factor category Data source Inducing factor

Topography and geomorphology Geological map SRTM DEM Elevation
Slope
Curvature
Slope structure

Geological lithology Geological map Stratigraphic lithology
Tectonic density

Hydrological factor National Fundamental Geographic Information Database SRTM DEM TWI
River distance

Land use Landsat remote sensing image NDVI
Land cover type

Human engineering activities OpenStreetMap Road density
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Table 6. Classification of slope structure types and their respective percentages within the study area.

Class Relationship between α, β, γ , and σ Area (%)

Nearly horizontal slope α ≤ 5° 1.720
Over-dip slope α > 5°, |γ -β| ∈[0, 30°) or |γ -β| ∈[330, 360°), σ > α 5.127
Flat-dip slope α > 5°, |γ -β| ∈[0, 30°) or |γ -β| ∈[330, 360°), σ = α 0.000
Under-dip slope α > 5°, |γ -β| ∈[0, 30°) or |γ -β| ∈[330, 360°), σ < α 13.581
Dip-oblique slope α > 5°, |γ -β| ∈[30, 60°) or |γ -β| ∈[300, 330°) 17.559
Transverse slope α > 5°, |γ -β| ∈60, 120°) or |γ -β| ∈[240, 300°) 32.066
Anticlinal-oblique slope α > 5°, |γ -β| ∈[120, 150°) or |γ -β| ∈[210, 240°) 15.089
Anticlinal slope α > 5°, |γ -β| ∈[150, 210°) 14.857

Figure 9. Pearson correlation analysis results for landslide-inducing factors.

the historical landslide data used for susceptibility predic-
tion encompass all 6888 recorded landslide events, not just
the 453 events filtered for inclusion in the rainfall threshold
model calculations.

4.2.3 Landslide susceptibility evaluation results

In this study, three models, CNN-3D, RF, and SVM, were
employed to evaluate the landslide susceptibility of the study

area. The optimal landslide susceptibility results obtained
from these models were then selected for subsequent daily
landslide hazard warnings. The relevant performance metrics
from the training of the three models are presented in Table 8.

Table 8 indicates that the AUC values for the CNN-3D,
RF, and SVM models are 0.96, 0.82, and 0.83, respectively.
These AUC values demonstrate that all three models effec-
tively predict the probability of landslide occurrence in the
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Table 7. Classification of landslide-inducing factors used in this study.

Predisposing factor Classification criteria Code

Elevation (m) ≤ 300 a
(300, 600]
(600, 900]
(900, 1200]
(1200, 1500]
> 1500

NDVI [−1, 0] b
(0, 0.2]
(0.2, 0.4]
(0.4, 0.6]
(0.6, 0.8]
(0.8, 1]

TWI ≤ 6 c
(6, 8]
(8, 10]
(10, 14]
> 14

Road density (km km−2) [0, 0.5] d
(0.5, 1.2]
(1.2, 2.5]
(2.5, 5.0]
> 5.0

Stratigraphic lithology Carbonates e
Clastic rocks
Carbonates and clastic rocks
Igneous and metamorphic rocks

Tectonic density (km km−2) [0, 0.03] f
(0.03, 0.12]
(0.12, 0.24]
(0.24, 0.38]
> 0.38

River distance (m) ≤ 500 g
(500, 1000]
(1000, 1500]
> 1500

Slope (°) [0, 10] h
(10, 20]
(20, 30]
(30, 40]
(40, 50]
> 50

Curvature (m−1) ≤−3 i
(−3, −1]
(−1, 0]
(0, 1]
> 1

https://doi.org/10.5194/nhess-24-3991-2024 Nat. Hazards Earth Syst. Sci., 24, 3991–4013, 2024



4004 B. Peng and X. Wu: Optimizing rainfall-triggered landslide thresholds

Table 7. Continued.

Predisposing factor Classification criteria Code

Land cover Urban land j
Agricultural land
Forest land
Grassland
Water
Other land

Slope structure Nearly horizontal slope k
Over-dip slope
Under-dip slope
Dip-oblique slope
Transverse slope
Anticlinal-oblique slope
Anticlinal slope

Table 8. Results from the training of the susceptibility evaluation
models.

Model Model evaluation indicators

AUC Accuracy Precision Recall F1 score

CNN-3D 0.96 0.9003 0.8663 0.9295 0.8968
RF 0.82 0.7500 0.7656 0.7416 0.7534
SVM 0.83 0.7630 0.7625 0.7623 0.7624

study area, with the CNN-3D model exhibiting superior pre-
dictive accuracy compared to the RF and SVM models. Fur-
thermore, the CNN-3D model outperforms the RF and SVM
models across the other four metrics. Consequently, the land-
slide susceptibility results from the CNN-3D model were
classified into five categories using the natural breaks method
(Fig. 11) and were subsequently utilized for daily landslide
hazard warnings.

Overall, areas of high landslide susceptibility in the study
region are predominantly located along riverbanks and in the
central and eastern sections. Within the district and county
boundaries, high-susceptibility areas are primarily concen-
trated in Zigui, the northern part of Badong, the southern part
of Xingshan, the central part of Fengjie, the central part of
Wanzhou, and the southeastern part of Zhongxian.

4.3 Landslide hazard warning

4.3.1 Landslide hazard results for each rainfall
warning level

In this study, a superposition matrix (Table 9) was created to
integrate the daily rainfall warning level with the landslide
susceptibility results, thereby generating daily landslide haz-
ard warnings.

Based on the landslide susceptibility results depicted in
Fig. 11 and utilizing the superposition matrix from Table 9,

the landslide hazard warning outcomes corresponding to
each rainfall level were determined (Fig. 12).

4.3.2 Daily landslide hazard warning

In 2020, continuous rainfall not only caused the Yangtze
River to experience the most severe basin-wide flood since
1998, but also triggered multiple landslides, with rainfall
reaching its peak on 19 July. Thus, 19 July 2020 was selected
as a case study for landslide hazard warning and validation
(Fig. 13). Using the superposition matrix in Table 9, Fig. 13d
was overlaid on Fig. 12 to derive the landslide hazard warn-
ing results for 19 July 2020 (Fig. 14).

On 19 July 2020, seven landslide hazards were identified,
as depicted in Fig. 14. Of these, five were classified within
the priority prevention zone and two within the secondary
prevention zone, which confirms the accuracy of both the
landslide hazard warning results and the rainfall threshold
model.

5 Discussion

5.1 Discussion of the rainfall threshold model

To identify the most effective rainfall thresholds in the study
area, this study employs two regression methods, OLS and
MLP, alongside two rainfall threshold models, E–D and E–
D–R. Regardless of the regression method used, the results
reveal that the E–D–R model exhibits superior warning ac-
curacy compared to the E–D model. Additionally, the opti-
mal rainfall threshold models for the Z13 and Z23Z24Z3 ar-
eas are the E–D–R models derived from the MLP regres-
sion, demonstrating the viability of neural networks (MLP)
in rainfall threshold modeling. However, given that the data
set in this study is relatively small (comprising only 453 land-
slides) and simple (involving only three variables), it may not
fully capture the advantages of neural networks for rainfall
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Figure 10. Grading results for landslide-inducing factors. (a) Elevation; (b) NDVI; (c) TWI; (d) road density; (e) stratigraphic lithology;
(f) tectonic density; (g) river distance; (h) slope; (i) curvature; (j) land cover; (k) slope structure.
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Figure 11. Landslide susceptibility results from the CNN-3D model.

Table 9. Superposition matrix of landslide susceptibility and rainfall warning levels. In the table, the numerical codes represent the following
zones: 1, relatively stable zone; 2, general prevention zone; 3, secondary prevention zone; and 4, priority prevention zone.

Susceptibility Very low Low Moderate High Very high

Rainfall threshold level

Attention 1 1 1 1 2
Special attention 1 1 1 2 3
Warning 1 1 2 3 4
Severe warning 1 2 3 4 4

threshold modeling. Nevertheless, we consider this a valu-
able effort. Future studies could incorporate additional vari-
ables, such as peak rainfall and rainfall intensity, and apply-
ing neural networks is likely to enhance the accuracy of rain-
fall warning models.

To explore the reasons for the E–D–R model’s superior
warning accuracy, this study examines area Z12 as a case
study and illustrates points where the rainfall warning level
has been modified (i.e., landslides with increased warning
levels) in the R–E plane view (Fig. 15).

The chart illustrates that the inclusion of the R indication
significantly elevated the rainfall warning level for the four
landslides. In the E–D model, P1 was classified as attention,
while the other three landslides were categorized as special
attention. However, in the E–D–R model with OLS regres-
sion, the warning level of P2 was upgraded to warning, and
the warning levels of the remaining three landslides were el-
evated to severe warning. Similarly, all four landslides were
classified as warning in theE–D–R model using the MLP re-
gression. The transitions in rainfall warning levels for these
landslides directly contributed to the improved accuracy of
the E–D–R model in the Z12 region.

An in-depth analysis of the rainfall processes for these four
landslides prior to their occurrence (Fig. 16) reveals that they
experienced relatively low rainfall in the 4 d leading up to the
landslide, resulting in a lowerE value, but substantial rainfall
on the day of the landslide. These characteristics resulted in
higher warning accuracy for these four landslides within the
E–D–R rainfall threshold model, suggesting that the R indi-
cator has notable sensitivity to landslides triggered by heavy
rainfall.

5.2 Discussion of daily landslide hazard warning

In this study, RF, SVM, and CNN-3D models were used to
predict landslide susceptibility in the Three Gorges Reser-
voir area. A comparative analysis revealed that the CNN-3D
model offers superior predictive accuracy for landslide sus-
ceptibility within the study area. Further examination of the
CNN-3D model’s results shows that the regions with high
landslide susceptibility are predominantly located in areas
with sparse vegetation, with fragile stratigraphic lithology,
close to rivers, and with active human engineering activities,
which is similar to the results reported by X. N. Wang et
al. (2022).
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Figure 12. Landslide hazard maps for each rainfall warning level. (a) Attention level hazard; (b) special attention level hazard; (c) warning
level hazard; (d) severe warning level hazard.

Regarding daily landslide hazard warnings, rainfall warn-
ing levels were calculated using the optimal rainfall thresh-
old model for each subdistrict based on forecast rainfall data
from rainfall stations. The daily landslide hazard warning re-
sults were then generated by employing a superposition ma-
trix to integrate the rainfall warning levels with the landslide
susceptibility results. On 19 July 2020, all seven identified
landslide hazards were confirmed to be within the priority
and secondary prevention zones. This indicates that the land-
slide hazard warning results derived from the rainfall thresh-
old model are highly accurate and significantly contribute to
effective landslide disaster prevention and control. Moreover,
the process of translating landslide susceptibility results into
hazard warnings through the rainfall warning levels and su-
perposition matrix serves as a refinement mechanism. This
correction reduces the areas requiring focused prevention and
attention, thereby optimizing the allocation of resources for
landslide management.

It is also important to note that the spatial probability of
landslide occurrence may vary between dry and rainy sea-
sons, and the influence of different landslide-inducing fac-
tors may change under varying climatic conditions. This
study primarily focused on the differences in rainfall thresh-
olds across various climatic and topographic conditions,

while the variations in spatial probability of landslide occur-
rence were not extensively explored. Additionally, changes
in reservoir water levels and groundwater fluctuations in the
Three Gorges Reservoir area are significant factors influenc-
ing landslide occurrence; however, these factors were not in-
cluded in this study due to data limitations.

5.3 Practical application of the rainfall threshold
model and daily landslide hazard warning

In the practical prevention and control of landslide hazards,
cost considerations are inevitable (C. Wang et al., 2023). To
maximize the protection of lives and property within a con-
strained budget, it is essential to prioritize and refine the areas
that require focused attention, while maintaining the accu-
racy of landslide hazard warning results.

The E–D–R rainfall threshold model, by incorporating
the benefits of the E–D model, enhances sensitivity to land-
slides induced by heavy rainfall on the same day and achieves
higher warning accuracy. Concurrently, the CNN-3D model,
which effectively integrates spatial information around each
raster point, provides more accurate landslide susceptibility
predictions compared to the RF and SVM models. Thus, both
theE–D–R rainfall threshold model and the CNN-3D model
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Figure 13. Various rainfall parameters and rainfall warning levels for 19 July 2020. (a) Effective rainfall interpolated by Kriging; (b) daily
rainfall interpolated by Kriging; (c) duration of rainfall estimated using Thiessen polygons; (d) rainfall warning levels calculated using the
optimal rainfall threshold model.

Figure 14. Landslide hazard warning results for 19 July 2020.
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Figure 15. Transition process of rainfall warning levels in the Z12
region. The green line indicates the boundary between the special
attention and attention levels, the yellow line denotes the boundary
between the warning and special attention levels, and the orange
line marks the boundary between the severe warning and warning
levels.

Figure 16. Rainfall processes at the transition points of rainfall
warning levels.

hold significant potential for application and development in
landslide warning and prevention. The combination of these
models’ results through superposition can ensure high accu-
racy in landslide hazard warnings while also narrowing the
focus areas using the rainfall warning levels derived from the
rainfall threshold model. This approach helps meet the de-
mands of effective landslide disaster prevention and control.

Nevertheless, despite the high accuracy of the E–D–R
rainfall threshold model and the CNN-3D model, certain un-
certainties persist. For the rainfall threshold model, (1) rain-

fall stations provide localized data, and there may be inac-
curacies when extending these data to the entire study area
using interpolation or Thiessen polygon methods. (2) Histor-
ical landslide data significantly influence the results of the
rainfall threshold model; insufficient data or extreme rain-
fall conditions can lead to uncertainties in the final rainfall
warning levels. (3) Although this study analyzed 10 regions
across both dry and rainy seasons, the broad regional scope
introduces uncertainty in rainfall thresholds due to vary-
ing topographic and geomorphological conditions. For the
CNN-3D model, uncertainties may arise from the selection
of landslide-inducing factors, the size of the evaluation unit,
and the division ratio of the training and test set.

Therefore, in practical landslide prevention and control
applications, it is crucial to tailor the predisposing factors
and evaluation units to the specific local context to ensure
the accuracy of the landslide susceptibility results (Zhang
et al., 2023). Simultaneously, constructing a comprehensive
historical landslide database is recommended. This database
should be updated with new landslide events and correspond-
ing rainfall data to recalibrate the area’s rainfall threshold
and refine the rainfall warning levels. As the historical land-
slide data accumulate, the uncertainty in the rainfall thresh-
old model is expected to decrease, leading to more precise
rainfall thresholds. With a sufficiently rich historical data set,
further regional subdivision may enhance rainfall warning
accuracy. Ultimately, this approach will improve the preci-
sion of landslide hazard warnings and provide valuable tech-
nical support for vulnerability assessment and disaster pre-
ventive and mitigation efforts.

6 Conclusion

Landslide disaster warning is a critical tool for the preven-
tion and management of landslides. To enhance the accu-
racy of landslide warning, this study employed two regres-
sion methods – MLP and OLS – and two rainfall threshold
models – E–D and E–D–R. The study area was divided into
two seasons, dry and rainy, as well as several subdistricts
based on topography and rainfall patterns, to identify the op-
timal rainfall threshold model for the region and determine
the daily rainfall warning levels. Additionally, 11 inducing
factors were selected to assess landslide susceptibility in the
study area using three models: RF, SVM, and CNN-3D. The
final step involved integrating the rainfall warning levels with
the landslide susceptibility results using a superposition ma-
trix to produce daily landslide hazard warnings for the Three
Gorges Reservoir area.
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The results indicate that the E–D–R rainfall threshold
model exhibits superior sensitivity to landslides triggered
by heavy rainfall, resulting in higher rainfall warning accu-
racy compared to the E–D model when either regression
method is applied. Specifically, for subdistricts Z11, Z12,
Z21Z22, Z25Z4, and dry season, the optimal rainfall thresh-
old model is the E–D–R model derived from OLS regres-
sion. Conversely, for subdistricts Z13 and Z23Z24Z3, the op-
timal model is the E–D–R threshold obtained through MLP
regression. Regarding landslide susceptibility, the CNN-3D
model achieved an AUC of 0.96 and an accuracy of 0.9003,
outperforming the RF and SVM models in prediction accu-
racy.

Daily landslide hazard warnings were calculated by com-
bining the daily rainfall warning levels with the landslide sus-
ceptibility results. The accuracy of these warnings was vali-
dated using data from the landslide event on 19 July 2020. Of
the seven landslides on that date, five occurred in the priority
prevention zone and two in the secondary prevention zone,
confirming the reliability of the landslide hazard warning re-
sults and the effectiveness of the rainfall threshold model.

The integration of rainfall warning levels with landslide
susceptibility results provides actionable guidance for local
landslide disaster prevention and control efforts. Moreover,
the introduction of MLP into the regression analysis of rain-
fall thresholds in this study contributes to the development of
rainfall threshold models and offers a valuable approach for
broader application.
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