Articles | Volume 19, issue 2
https://doi.org/10.5194/nhess-19-325-2019
https://doi.org/10.5194/nhess-19-325-2019
Brief communication
 | 
07 Feb 2019
Brief communication |  | 07 Feb 2019

Brief communication: Remotely piloted aircraft systems for rapid emergency response: road exposure to rockfall in Villanova di Accumoli (central Italy)

Michele Santangelo, Massimiliano Alvioli, Marco Baldo, Mauro Cardinali, Daniele Giordan, Fausto Guzzetti, Ivan Marchesini, and Paola Reichenbach

Related authors

Geomorphological landslide inventory map of the Daunia Apennines, southern Italy
Francesca Ardizzone, Francesco Bucci, Mauro Cardinali, Federica Fiorucci, Luca Pisano, Michele Santangelo, and Veronica Zumpano
Earth Syst. Sci. Data, 15, 753–767, https://doi.org/10.5194/essd-15-753-2023,https://doi.org/10.5194/essd-15-753-2023, 2023
Short summary
A new digital lithological map of Italy at the 1:100 000 scale for geomechanical modelling
Francesco Bucci, Michele Santangelo, Lorenzo Fongo, Massimiliano Alvioli, Mauro Cardinali, Laura Melelli, and Ivan Marchesini
Earth Syst. Sci. Data, 14, 4129–4151, https://doi.org/10.5194/essd-14-4129-2022,https://doi.org/10.5194/essd-14-4129-2022, 2022
Short summary
LANDSLIDE EVOLUTION PATTERN REVEALED BY MULTI-TEMPORAL DSMS OBTAINED FROM HISTORICAL AERIAL IMAGES
M. Santangelo, L. Zhang, E. Rupnik, M. P. Deseilligny, and M. Cardinali
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1085–1092, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022,https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1085-2022, 2022
Criteria for the optimal selection of remote sensing optical images to map event landslides
Federica Fiorucci, Daniele Giordan, Michele Santangelo, Furio Dutto, Mauro Rossi, and Fausto Guzzetti
Nat. Hazards Earth Syst. Sci., 18, 405–417, https://doi.org/10.5194/nhess-18-405-2018,https://doi.org/10.5194/nhess-18-405-2018, 2018
Short summary
An approach to reduce mapping errors in the production of landslide inventory maps
M. Santangelo, I. Marchesini, F. Bucci, M. Cardinali, F. Fiorucci, and F. Guzzetti
Nat. Hazards Earth Syst. Sci., 15, 2111–2126, https://doi.org/10.5194/nhess-15-2111-2015,https://doi.org/10.5194/nhess-15-2111-2015, 2015
Short summary

Related subject area

Landslides and Debris Flows Hazards
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024,https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024,https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary

Cited articles

Agliardi, F. and Crosta, G. B.: High resolution three-dimensional numerical modelling of rockfalls, Int. J. Rock Mech. Min., 40, 455–471, https://doi.org/10.1016/S1365-1609(03)00021-2, 2003. a
Baldo, M., Bicocchi, C., Chiocchini, U., Giordan, D., and Lollino, G.: LIDAR monitoring of mass wasting processes: The Radicofani landslide, Province of Siena, Central Italy, Geomorphology, 105, 193–201, https://doi.org/10.1016/j.geomorph.2008.09.015, 2009. a
Boccardo, P., Chiabrando, F., Dutto, F., Tonolo, F., and Lingua, A.: UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications, Sensors, 15, 15717–15737, https://doi.org/10.3390/s150715717, 2015. a, b
Budetta, P.: Assessment of rockfall risk along roads, Nat. Hazards Earth Syst. Sci., 4, 71–81, https://doi.org/10.5194/nhess-4-71-2004, 2004. a
Cacciuni, A., Centamore, E., Di Stefano, R., and Dramis, F.: Evoluzione morfotettonica della conca di Amatrice, Studi Geologici Camerti, spec 1995/2, 95–100, 1995. a
Download
Short summary
The paper discusses the use of rockfall modelling software and photogrammetry applied to images acquired by RPAS to provide support to civil protection agencies during emergency response. The paper focuses on a procedure that was applied to define the residual rockfall risk for a road that was hit by an earthquake-triggered rockfall that occurred during the seismic sequence that hit central Italy on 24 August 2016. Road reopening conditions were decided based on the results of this study.
Altmetrics
Final-revised paper
Preprint