Articles | Volume 25, issue 2
https://doi.org/10.5194/nhess-25-709-2025
https://doi.org/10.5194/nhess-25-709-2025
Research article
 | 
18 Feb 2025
Research article |  | 18 Feb 2025

An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas

Chenchen Qiu and Xueyu Geng

Related authors

Dynamic Complex Network Analysis of PM2.5 Concentrations in the UK using Hierarchical Directed Graphs (V1.0.0)
Parya Broomandi, Xueyu Geng, Weisi Guo, Jong Ryeol Kim, Alessio Pagani, and David Topping
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-342,https://doi.org/10.5194/gmd-2019-342, 2020
Revised manuscript not accepted
Short summary

Related subject area

Landslides and Debris Flows Hazards
Identifying unrecognised risks to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
Nat. Hazards Earth Syst. Sci., 25, 647–656, https://doi.org/10.5194/nhess-25-647-2025,https://doi.org/10.5194/nhess-25-647-2025, 2025
Short summary
Predicting the thickness of shallow landslides in Switzerland using machine learning
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci., 25, 467–491, https://doi.org/10.5194/nhess-25-467-2025,https://doi.org/10.5194/nhess-25-467-2025, 2025
Short summary
Unraveling landslide failure mechanisms with seismic signal analysis for enhanced pre-survey understanding
Jui-Ming Chang, Che-Ming Yang, Wei-An Chao, Chin-Shang Ku, Ming-Wan Huang, Tung-Chou Hsieh, and Chi-Yao Hung
Nat. Hazards Earth Syst. Sci., 25, 451–466, https://doi.org/10.5194/nhess-25-451-2025,https://doi.org/10.5194/nhess-25-451-2025, 2025
Short summary
Comparison of conditioning factor classification criteria in large-scale statistically based landslide susceptibility models
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci., 25, 183–206, https://doi.org/10.5194/nhess-25-183-2025,https://doi.org/10.5194/nhess-25-183-2025, 2025
Short summary
Invited perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025,https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary

Cited articles

Alene, G. H., Irshad, S., Moraru, A., Depina, I., Bruland, O., Perkis, A., and Thakur, V.: Virtual reality visualization of geophysical flows: A framework, Environ. Modell. Softw., 177, 106063, https://doi.org/10.1016/j.envsoft.2024.106063, 2024. 
Bründl, M., Romang, H. E., Bischof, N., and Rheinberger, C. M.: The risk concept and its application in natural hazard risk management in Switzerland, Nat. Hazards Earth Syst. Sci., 9, 801–813, https://doi.org/10.5194/nhess-9-801-2009, 2009. 
Chang, M., Tang, C., Zhang, D. D., and Ma, G. C.: Debris flow susceptibility assessment using a probabilistic approach: A case study in the Longchi area, Sichuan province, China, J. Mt. Sci., 11, 1001–1014, https://doi.org/10.1007/s11629-013-2747-9, 2014. 
Chang, M., Tang, C., Ni, H., and Qu, Y.: Evolution process of sediment supply for debris flow occurrence in the Longchi area of Dujiangyan City after the Wenchuan earthquake, Landslides, 12, 611–623, https://doi.org/10.1007/s10346-015-0571-8, 2015. 
Chen, T. and Guestrin, C.: XGBoost: A scalable tree boosting system, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 13–17 August, 785–794, https://doi.org/10.1145/2939672.2939785, 2016. 
Download
Short summary
We propose an integrated method using a combination of a physical vulnerability matrix and a machine learning model to estimate the potential physical damage and associated economic loss caused by future debris flows based on collected historical data on the Qinghai–Tibet Plateau region.
Share
Altmetrics
Final-revised paper
Preprint