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Abstract. The vulnerability assessment of buildings in future
scenarios is critical to decreasing potential losses caused by
debris flows in mountainous areas due to complex topograph-
ical conditions that could increase environmental vulnerabil-
ity to climate change. However, a lack of reliable methods
limits the accurate estimation of a physical damage and the
associated economic loss. Therefore, an integrated method
of physical vulnerability matrix and machine learning model
was developed to benefit the estimation of damage degree for
buildings caused by a future debris-flow event. By consider-
ing the building structures (reinforced-concrete (RC) frame
and non-RC frame), spatial positions between buildings and
the debris-flow channels (horizontal distance (HD) and ver-
tical distance (VD)), and impact pressure (Pt) on buildings,
a physical vulnerability matrix was proposed that links phys-
ical damage with the four factors. In order to overcome the
difficulty in estimating the possible impact pressure on build-
ings, an ensemble machine learning (ML) model (XGBoost)
was developed with the involvement of geological factors.
Additionally, HD and VD were decided based on satellite
images. The Longxihe Basin, Sichuan, China, was selected
as a case study. The results show that the ML model can
achieve a reliable impact pressure prediction because the
mean absolute percentage error (MAPE), root mean square
error (RMSE), and mean absolute error (MAE) values are
9.53 %, 3.78 kPa, and 2.47 kPa, respectively. Furthermore,
13.9 % of buildings in the Longxihe Basin may suffer severe
damage caused by a future debris-flow event, and the highest
economic loss is found for a residential building, reaching
EUR 5.1×105. Overall, our work can provide scientific sup-
port for the site selection of future constructions.

1 Introduction

Debris flows are among the most frequent and costly natural
hazards due to climate change and difficulty in issuing timely
warnings (Santi et al., 2011). These events can devastate en-
tire settlements in their path and pose a significant threat to
natural environments (Immerzeel et al., 2020), causing de-
struction of aquatic biodiversity along with damage to prop-
erties and finally leading to considerable economic losses
worldwide each year (Qiu et al., 2022; Alene et al., 2024;
Sridharan et al., 2024). In the European Alps, this disaster
type caused an economic loss of at least EUR 5 billion from
1988 to 2012 (Fuchs, 2009; Guzzetti et al., 2005). Moreover,
a similar average annual loss has also been found in China:
approximately EUR 0.17 billion of annual loss was recorded
during the time period of 2005–2015 (Miao and Liu, 2020).
A reliable estimation of the potential economic loss caused
by debris flows is essential since it can provide guidance
for decision-makers about where to place infrastructures and
buildings. Buildings are the element most susceptible to de-
bris flows, and they are responsible for most of the associated
economic loss (Fuchs, 2009; Wei et al., 2018). Therefore, in
order to calculate the potential economic loss, it is critical to
estimate the damage degree for the buildings since economic
loss is linked to the physical vulnerability of a property and
its economic value.

Physical vulnerability quantifies the damage degree for a
property, and the methods that are used to decide the phys-
ical vulnerability include mechanical methods (Ruggieri et
al., 2023, 2022), vulnerability matrices, vulnerability curves,
and vulnerability indicators (Papathoma-Köhle et al., 2017).
The mechanical methods derive the vulnerability functions
of buildings based on numerical models, which may achieve
relatively high evaluation accuracy but are highly reliant on
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controlled laboratory experiments to obtain input data. As a
result, this method itself is time-consuming and costly for
regional application (Paudel et al., 2021; Qiu et al., 2022).
Three vulnerability curves were derived using numerical
modelling to relate the vulnerability to debris-flow intensity,
including flow height, flow velocity, and kinematic viscos-
ity (Quan Luna et al., 2011). Although these three curves
can suggest the physical vulnerability of a building at risk,
they fail to consider the impacts of building structures on the
damage degree. Therefore, a brick structure and a reinforced-
concrete frame were included in the development of vulner-
ability curves by Zhang et al. (2018). However, the involve-
ment of limited building types restricts the application of the
curves when the determination of physical vulnerabilities for
different building types is required. Therefore, considering
the limitations of vulnerability curves, different vulnerabil-
ity matrices of buildings have also been developed by many
studies due to their advantages in understanding interactions
between the debris-flow process and elements at risk and in
being easily readable by non-experts (Bründl et al., 2009;
Kang and Kim, 2016; Zanchetta et al., 2004). However, these
developed matrices have ignored the spatial position (hori-
zontal distance and vertical distance) between the buildings
and the debris-flow channels, which could lead to misestima-
tion of the damage degree for a building caused by a debris-
flow event. As for the vulnerability indicators, this method
considers the characteristics of buildings without consider-
ing the debris-flow process when evaluating the damage de-
grees (Fuchs et al., 2019). Therefore, it is crucial to establish
a comprehensive assessment matrix that takes into account
the structural types, spatial positions between buildings and
the debris-flow channels, and debris-flow intensities to esti-
mate the potential damage to the buildings. Additionally, the
possible damage degree for the buildings in future scenarios
has not been considered by past studies (Papathoma-Köhle et
al., 2017). Therefore, this study focuses on conducting an as-
sessment of the potential physical damage to a building due
to a future debris-flow event.

Among the four factors in deciding the physical damage
to buildings (building structure, spatial locations (horizon-
tal distance (HD) and vertical distance (VD)), and impact
pressure (Pt)), impact pressure remains an unsolved prob-
lem since HD and VD can be determined based on satellite
images. In this case, a machine learning model was devel-
oped to predict the impact pressure on a building because this
method can uncover intricate and concealed relationships be-
tween various input variables and an output result (Khosravi
et al., 2021; Jiang et al., 2024). To leverage the benefits of
rapid processing and handling large-scale data, we employ
an ensemble model, specifically extreme gradient boosting
(XGBoost). This choice is made due to XGBoost’s ability to
partition data into smaller components, facilitating parallel
computation and multithreading to enhance processing speed
(Chen and Guestrin, 2016).

In this paper, we propose an integrated method of a physi-
cal vulnerability matrix and machine learning model to es-
timate the physical damage to a building caused by a fu-
ture debris-flow event, finally estimating the economic loss
associated with this property. The buildings in the Longx-
ihe Basin, Sichuan, China, were extracted to conduct a case
study to test the efficiency and reliability of this method
in physical damage estimation and corresponding economic
loss. The formation of terrain in this area is affected by se-
vere tectonic activities, such as earthquakes (Chang et al.,
2014, 2015), which can produce abundant loose materials for
potential debris flows.

2 Methodology

To estimate the economic loss of buildings caused by a future
debris-flow event, several steps are included in this study (see
Fig. 1):

1. The historical debris-flow events in Gyirong, the Tibet
Autonomous Region, and the Sichuan Basin (Fig. 2)
from the past 10 years were investigated based on satel-
lite images and field investigations to collect informa-
tion regarding the debris-flow volumes and damaged
buildings.

2. We categorized the collected historical debris flows into
two datasets (dataset I and dataset II) for the develop-
ment of a physical vulnerability matrix and a prediction
model, respectively.

3. Dataset I includes the debris-flow events that caused
damage to the buildings. In detail, Vp is the physical
vulnerability of buildings, and Pt represents the impact
pressure of a debris-flow event on buildings. HD and
VD are the horizontal and vertical distance of build-
ings to their nearest debris-flow channel. Therefore, this
dataset is employed for the development of a physical
vulnerability matrix. This dataset mainly includes the
debris-flow events that occurred in the Sichuan Basin,
China, and also several events in the Gyirong area.

4. Dataset II is composed of the debris-flow events that
occurred in areas without the distribution of buildings,
and, therefore, no property loss is caused by these
events. For the purpose of establishing an estimation
model, a series of factors, such as the depositional vol-
ume of a debris-flow event (U ), area of a debris-flow
catchment (A), length of the main channel for a catch-
ment (L), average topographic relief (R), and average
gradient of main channel (J ), are considered. ρdf is the
mean density of the material. Therefore, this dataset was
used for model training and utilizing this model to esti-
mate the debris-flow intensity in future scenarios, such
as the debris-flow impact pressure on buildings. This
dataset is shown in Table B1 of Appendix B.

Nat. Hazards Earth Syst. Sci., 25, 709–726, 2025 https://doi.org/10.5194/nhess-25-709-2025



C. Qiu and X. Geng: An integrated method for assessing vulnerability of buildings 711

Figure 1. Flowchart of this study.

Figure 2. The historical debris flows collected in the Qinghai–Tibet
Plateau and the Sichuan Basin.

2.1 Physical vulnerability matrix

Vulnerability, usually referring to physical vulnerability, de-
notes the extent of damage a property may suffer when sub-
jected to a hazard event, such as a landside and a debris-flow
event (Fell, 1994), ranging from no damage (vulnerability
is assigned 0) to completely destroyed (vulnerability is as-
signed 1). To obtain the future economic loss of a building
at risk, a physical vulnerability matrix of the buildings was
proposed. The determination of physical vulnerability (Vp)
relied on the impact pressure (Pt) on buildings and the hori-
zontal distance (HD) and the vertical distance (VD) between
the building and the nearest debris-flow channel, as indicated
by Eq. (1). The determining details of the three parameters in
Eq. (1) are demonstrated in the following sections.

Vp =H (Pt ,HD,VD) (1)
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2.1.1 Calculation of impact pressure

In order to propose a physical vulnerability matrix, the first
step is to link the impact pressure to the damage degree. As
suggested by Jakob et al. (2012) and Kang and Kim (2016),
Pt can effectively reflect the energy of debris flows and possi-
ble damage degree for buildings. However, past studies have
usually utilized the debris-flow magnitude to determine the
physical vulnerability since a greater magnitude may indi-
cate a more significant impact force (Dai et al., 2002). This
impact force cannot represent the actual damage to a build-
ing during a debris-flow event because the catchment with a
potential large-scale debris-flow event may not cause severe
damage to the buildings. The reason behind this uncertainty
could be due to the moderate gradient of the debris-flow
channel and its frictional resistance, which could decrease
the kinetic energy of the travelling mass (Qiu et al., 2024).
Consequently, only slight or moderate damage to buildings
could be caused. Therefore, impact pressure can better reflect
the damage degree for buildings when subjected to differ-
ent debris-flow magnitudes, which can be calculated through
considering the dynamic overpressure and hydrostatic pres-
sure (Eq. 2) (Zanchetta et al., 2004):

Pt =
1
2
ρdfgh+ ρdfv

2
= f (ρdf,h,v) , (2)

where Pt (kPa) represents the impact pressure on buildings
and g is the gravitational acceleration. v (m s−1) represents
the flow velocity at the maximum discharge, and ρdf is the
mean density of materials for a debris-flow event. h (m) is the
flow depth that describes the deposit depth on buildings. As
for the debris-flow velocity (v) at peak discharge (Qp), it can
be calculated using the equation proposed by Rickenmann
(1999). This equation (Eq. 3) considers debris-flow datasets
in different regions, such as Italy, China, Japan, the USA, and
Colombia, which enables its feasibility to be used in wider
and different areas.

v = 2.1Q0.33
p J 0.33

= f1
(
Qp,J

)
(3)

This equation illustrates that the velocity can be decided by
Qp (m3 s−1) and channel gradient (J ) (Cui et al., 2013). It is
worth noting that J changes along the channel. In our study,
we focused on the mean gradient of the main channel within
a debris-flow catchment, and it is calculated using the equa-
tion proposed by IMHE (1994):

J =

(
m∑
j=1

(
Ej−1+Ej

)
Lj − 2E0L

)
L2 , (4)

where J is the mean path gradient (‰). Ej (j = 1,2, . . . ,
j − 1) represents the elevation of each break point in the
movement path (m). Elevation was downloaded from the
Alaska Satellite Facility (ASF) website (https://search.asf.

Figure 3. The segments of the main channel within a catchment.

alaska.edu/#/, last access: 23 February 2024), where a DEM
with a spatial resolution of 12.5 m is available. Lj is length
of each section within the movement path (m).m is the num-
ber of sections. E0 represents the elevation at the endpoint of
the mass movement (m), while L denotes the length of the
travel path (m). The divided sections are presented in Fig. 3.

The calculation ofQp can be determined based on the fol-
lowing equation (Eq. 5):

Qp = (U/152.97)1/1.266
= f2 (U) . (5)

Therefore, Qp can be calculated based on the estimated vol-
ume (U (m3)) of historical debris flows. However, the ab-
sence of flow depth (h) also hampers the calculation of im-
pact pressure. Therefore, an equation is used to calculate the
flow depth (Koch, 1998). This formula has been proven to
perform well in the numerical simulation of viscous debris
flows (Eq. 6):

h=
(
v/C1J

0.5
)10/3

= f3 (v,C1,J )

= f3
(
f1
(
Qp,J

)
,C1,J

)
, (6)

where C1 represents the dimensional empirical coefficient.
The value of this parameter is indicated by a semi-theoretical
relationship (Eq. 7) (Rickenmann, 1999):

C1 = 10Q2/25
p = f4

(
Qp
)
= f4 (f2 (U)) . (7)

Therefore, the impact pressure can be described as a function
of the debris-flow volume and channel gradient, and the im-
pact pressures of dataset I are calculated based on Eqs. (2)–
(7) (see Table 1).

Determination of HD and VD values

HD and VD values were also introduced here since the ac-
tual damage will be significant if a building stands close
to the debris-flow channel (Sturm et al., 2018). They can
be estimated through high-resolution satellite images, such
as Gaofen, Ziyuan, Worldview, and GeoEye. In this study,
Gaofen-2 satellite images are employed for determining the
HD and VD values. This satellite can capture panchromatic
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Table 1. Dataset I for the physical vulnerability matrix.

No. Year Long Lat Number of Impact Maximum Maximum
(°) (°) damaged pressure HD VD

buildings Pt (kPa) (m) (m)

1 2006 85.3278 28.3735 21 16.1 162 12
2 2007 85.5683 29.1875 13 40.6 141 12
3 2007 85.5528 28.8717 7 37.5 13 7
4 2008 85.6241 29.1869 21 41.0 119 3
5 2010 86.0872 29.1625 11 35.5 54 2
6 2013 85.3112 28.7649 53 24.1 284 29
7 2015 85.2928 28.4174 9 117.4 160 2
8 2015 85.3608 28.4074 22 31.1 131 107
9 2015 85.3542 28.7159 7 17.5 82 13
10 2015 84.7653 28.7559 38 132 74 15
11 2015 85.4566 28.3868 3 5.1 32 10
12 2015 85.4413 28.3827 1 32.7 17 6
13 2015 85.0105 29.1208 3 5.2 133 2
14 2015 85.2579 29.2603 9 9.8 146 2
15 2015 85.2759 29.2652 6 14.8 228 10
16 2015 85.0083 29.1493 4 14.6 171 3

(black and white) images with a spatial resolution reaching
0.8 m and multispectral (colour) images with a spatial resolu-
tion up to 3.2 m. Therefore, the resolution of satellite images
used for the determination of HD values is 0.8 m. However,
there is no elevation information provided by satellite im-
ages. Therefore, a DEM was used to extract the VD infor-
mation between a building and its nearest debris-flow chan-
nel. As for the building clusters that are hard to be separated
into individual buildings manually, a “fishnet” tool in a GIS
was used to automatically divide these clusters into building
segments. Furthermore, the rectangular segments were con-
verted into points so that each point represents a building.
As a result, the HD and VD values of a building can be de-
cided. The damaged buildings are mainly distributed on the
accumulation fans. Therefore, even though a large HD is ob-
served, VD is small due to the mild slope and smooth to-
pography of the alluvial fans (Marcato et al., 2012). By con-
sidering the impact pressure, HD, and VD values, a physical
vulnerability matrix can be established to evaluate the phys-
ical damage of a building caused by a debris-flow event.

2.2 Economic loss of a building at risk

The economic loss of a building caused by a debris-flow
event can be estimated based on multiplication of its phys-
ical vulnerability and economic value.

Ve = Vp×M =H (Pt ,HD,VD)×M;M = P ×A, (8)

where Ve and M represent the economic loss and the eco-
nomic value of a building, respectively. P is the unit price of
a building, andA represents the area of a building. Therefore,
estimating Vp holds paramount importance in estimating eco-
nomic loss. However, Vp (H(Pt, HD, VD)) is represented by

the proposed physical vulnerability matrix. In this context,
determining Pt plays a critical role in economic loss estima-
tion. Therefore, to forecast the possible economic loss caused
by a future debris-flow event, we need to estimate the impact
pressure on buildings caused by a future debris-flow event.

2.3 Prediction model development

To predict the future impact pressure on buildings when
a debris-flow event occurs, determining factors is essen-
tial. Therefore, we further developed Eq. (6) by integrating
Eqs. (5) and (7) into this equation:

h= f3 (f1 (f2 (U),J ),f4 (f2 (U)),J )= F (U,J ) . (9)

Additionally, Eq. (3) can be rewritten as

v = f1
(
Qp,J

)
= f1 (f2 (U),J )= S (U,J ) . (10)

Therefore, the determination of impact pressure relies on U
and J :

Pt = f (ρdf,F (U,J ),S (U,J )) . (11)

However, the debris-flow volume is closely related to a set
of geomorphic factors, as suggested by Huang et al. (2020).
They are catchment area (A), channel length (L), topo-
graphic relief (R), and mean slope of the main channel (J ).
The catchment area can reflect the debris availability and ca-
pacity of generating and containing the volume of loose ma-
terials for a debris-flow catchment. As for the channel length,
it is related to the entrained and transported sediment volume
(Marchi et al., 2019). Therefore, this parameter can also im-
pact the final volume of a debris-flow event. R is defined as
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the terrain fluctuation and roughness of a catchment. To cal-
culate this value, we need to first decide the optimal statisti-
cal unit in this area using the change-point model. Then, the
subtraction value between the maximum value and minimum
values of an optimal statistical unit is calculated. Finally, we
utilized the maximum subtraction value to represent the R
value of a catchment. J is defined as the ratio of the ele-
vation difference in the main channel to channel length. A
longer distance could be achieved for a debris-flow event if a
steep channel exists in a catchment (de Haas and Densmore,
2019). In this case, U can be described as a function of A, L,
R, and J :

U = f5 (A,L,R,J ) . (12)

Furthermore, substituting Eq. (12) into (11) gives

Pt = f (ρdf,F (f5 (A,L,R,J ),J ),S (f5 (A,L,R,J ),J )) . (13)

Therefore, Pt can be described as a complex function of
geomorphology-related factors, including A, L, R, and J .
To find the complicated correlations among them, an ensem-
ble machine learning model (extreme gradient boosting (XG-
Boost)) was employed here to establish the relationship and
then utilize this relationship to estimate the potential impact
pressure on buildings when a future debris-flow event occurs.
The basic mechanism of XGBoost is to constantly develop a
new decision tree which acts as a weak learner and fits the
residual error of the last prediction. After the training of a to-
tal of k trees, the final prediction result is the sum of the score
of each leaf node in each developed tree. In this study, a grid
search algorithm was employed to decide the optimal hyper-
parameters of XGBoost. As a result, the hyper-parameters of
n_estimators, learning_rate, max_depth, min_child_weight,
and gamma were determined as 500, 0.1, 5, 1, and 0.01, re-
spectively. The target function of regression overall is in Ap-
pendix A. Additionally, dataset II, which is used for impact
pressure prediction, is presented in Table B1 of Appendix B.

2.4 Model assessment

After the impact pressure prediction, three assessment in-
dexes were used to evaluate the prediction performance,
i.e. MAPE (mean absolute percentage error), RMSE (root
mean square error), and MAE (mean absolute error):

MAPE=
1
m

m∑
i=1

∣∣yi − yipre
∣∣

yi
, (14)

RMSE=

√√√√ 1
m

m∑
i=1

(
yi − yipre

)2
, (15)

MAE=
1
m

m∑
i=1

∣∣yi − yipre
∣∣ , (16)

where yi is the actual value and yipre represents the prediction
value. m is the number of prediction values.

3 Result analysis

3.1 The relationship between the damage degree and Pt

Figure 3 shows the different damage degrees for buildings
in dataset I. The buildings were classified into two types:
reinforced-concrete (RC) frame and non-RC frame (ma-
sonry, wooden structure, and light steel frame). As indi-
cated in Fig. 4e and f, the masonry buildings suffered severe
damage, and the light-steel-frame buildings and wooden-
structure buildings were destroyed (Fig. 4g, h) even though
the impact pressure on buildings was estimated to be less
than 30 kPa. However, the main structure of reinforced-
concrete buildings can remain undamaged (Fig. 4b) when
severe damage is found in the masonry structure during the
same debris-flow event. This resistance ability difference in-
dicates the difference in physical vulnerabilities between the
RC and the non-RC frames, which can also be seen in Fig. 4a.
Moreover, moderate damage to the RC frame with unrein-
forced masonry infill walls when a small-scale debris-flow
event occurs is depicted in Fig. 4c. Additionally, the RC
frame suffers extensive damage when the impact pressure ex-
ceeds 100 kPa based on the estimated debris-flow volume.
Overall, the identification of different damage degrees for
buildings helps in proposing classification standards for the
physical vulnerability of buildings.

3.2 Determination of HD and VD thresholds

Field investigations and statistical results show that the non-
RC frame buildings are destroyed or suffer structural damage
when HD is less than 30 m (Fig. 5a). The damaged buildings
cannot be repaired, and reconstruction is required. Consis-
tently with the conclusions of a past study (Wei et al., 2022),
residential buildings, such as brick structures (Fig. 5b) and
the RC frame buildings (Fig. 5c), are partially buried by the
debris-flow sediments without structural damage when HD
is greater than 100 m but less than 160 m. Therefore, 160 m
is another HD threshold with which to classify the inundated
and slightly affected areas. The upper limit of the HD value
for the historical debris flows during the field investigations
is 230 m because almost 94 % of HD values are less than
230 m (see Table 1).

In order to support the threshold determination of HD, we
further analysed the frequencies of HD values for the dam-
aged buildings, as depicted in Table 1, through dividing the
HD values into several intervals. The frequency and cumula-
tive frequency results are shown in Fig. 6.

As depicted in Fig. 6, the highest proportion of damaged
buildings occurs in the range of 10 to 20 m, accounting for
20.1 %, followed by a 15 % percentage of HD values falling
between 20 to 30 m. Therefore, the proportion falling within
the range of 0 to 30 m is 49.4 %, and approximately 82.5 %
of the HD values are measured at under 100 m. Following the
suggestion of Liu et al. (2020), a probability of 50 % is con-

Nat. Hazards Earth Syst. Sci., 25, 709–726, 2025 https://doi.org/10.5194/nhess-25-709-2025
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Figure 4. Photographs of the damaged residential buildings caused by debris flows during field investigations on the Qinghai–Tibet Plateau.

sidered a threshold for debris-flow warning, which implies
that 30 m in this study can serve as a threshold. Moreover, the
cumulative frequency of 80 % is selected as another threshold
based on Wei et al. (2018), corresponding to the HD value of
100 m. Furthermore, 90.5 % of the damaged buildings have
HD values of less than 160 m, and nearly 98.9 % of the dam-
aged buildings fall within the HD range of 0 to 230 m. As a
result, 160 and 230 m are selected as two additional thresh-
olds. In addition to the determination of HD threshold values,
the maximum flow depth (hmax) in the debris-flow channel is

used as a reference to determine the VD thresholds since the
buildings are mostly situated along the channels (Figs. 5a and
7).

Therefore, calculating the elevation difference between the
buildings and the nearest debris-flow channel is critical to
evaluating the safety of the buildings. It is worth noting that
the height of a building was not considered when estimat-
ing the VD values. For example, the masonry buildings in
Figs. 5a and 7 are close to the debris-flow channel, but no se-
vere damage is observed for the building in Fig. 7 because it

https://doi.org/10.5194/nhess-25-709-2025 Nat. Hazards Earth Syst. Sci., 25, 709–726, 2025
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Figure 5. Examples informing the determination of the HD thresholds.

Figure 6. The frequency and cumulative frequency distributions of
the 228 damaged buildings.

is at a considerable vertical distance from the main channel.
To determine the VD thresholds, the h values of the historical
debris flows, presented in Table B1 of Appendix B, are used.
The average depth of the debris flows is 2.6 m, and nearly
all the VD values are less than 4 m. Therefore, 4 m serves as
the first threshold, suggesting that the most severe damage
to the buildings may be caused when VD is less than 4 m. A
debris-flow depth value as high as 10 m, which can be found
in curved channels, has also been suggested as a threshold
(Xie et al., 2013). Consequently, we utilize 10 m to indicate
the moderate damage of buildings when VD is less than 10 m
but greater than 4 m. Moreover, a vertical distance of 14 m
above the river level is considered to record the river gauging
on the Iowa River using a digital video camera (Creutin et
al., 2003), which indicates a safe VD value to avoid damage
caused by the river discharge. Therefore, 15 m is used as the
upper limit of the VD values in this paper.

Nat. Hazards Earth Syst. Sci., 25, 709–726, 2025 https://doi.org/10.5194/nhess-25-709-2025
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Figure 7. Example informing the determination of the VD thresh-
old. VD in this figure indicates the height difference between the
river table and the masonry structure without considering the height
of this building.

3.3 Physical vulnerability matrix (h(Pt, HD, VD))

The proposed physical vulnerabilities of residential buildings
are listed in Table 2. Extensive damage or even complete
damage may occur when a non-RC building is located near
the debris-flow channel with an HD value of less than 30 m
and VD less than 4 m. However, a significant improvement in
resistance ability can be observed when the non-RC frame is
replaced by the RC frame considering the same impact pres-
sure, HD, and VD values. In general, the buildings hardly
suffer damage when VD is greater than 10 m. Therefore, the
economic loss associated with a building can be calculated
based on the proposed physical vulnerabilities and economic
values.

3.4 Prediction model development and assessment

The debris flows in Table B1 (see Appendix B) were divided
into a training set and a validation set with a ratio of 7 : 3,
and the training set is used to train the prediction model. The
validation results are plotted in Fig. 8. Additionally, the per-
formance of the developed model is assessed using the three
indexes (Eqs. 14–16). As indicated in Fig. 8, the prediction
results show minor errors compared to the actual values, and
the MAPE, RMSE, and MAE values are 9.70 %, 3.98 kPa,
and 2.74 kPa, respectively. The RMSE value can reflect the
extreme errors, and the calculated RMSE value can indicate
that there are no extreme values observed in the prediction re-
sults. MAPE reflects the error percentage between the mea-
sured and predicted values, and the model is more reliable
if the MAPE is closer to 0. Therefore, it can be concluded
that this model performed well in predicting the volume of a
future debris-flow event.

Figure 8. Deviations between the prediction results (hollow trian-
gles) estimated by the machine learning model and actual values
(straight line).

4 Case study

4.1 Geological setting

We selected the Longxihe Basin (Fig. 9) in Dujiangyan,
Sichuan Province, to conduct a case study (see Fig. 1 for
the geographic location of this area), 15 km away from the
epicentre of the 2008 Wenchuan earthquake (also called the
Sichuan earthquake). There are three faults crossing this area,
namely the southern branch of the Yingxiu–Beichuan Fault,
the northern branch of the Yingxiu–Beichuan Fault, and the
Feilaifeng Structure. They cause incised valleys and uplifting
of the land surface, resulting in large areas of exposed rocks.
Additionally, this study area belongs to a subtropical mon-
soon climate, with annual precipitation reaching 1134.8 mm.
Over 80 % of the annual rainfall occurs from May to Septem-
ber. Consequently, the abundant rainfall and complex geo-
logical structure give birth to frequent debris flows. It was
reported that 13 debris-flow events occurred in this basin on
12 May, 24 June, and 25 September 2008 and 17 July 2009.
In particular, 45 debris-flow events were recorded on 13 Au-
gust 2010 due to a high-intensity rainfall event, causing se-
vere damage to 233 buildings and resulting in a total eco-
nomic loss of EUR 7.2×107 (Yu et al., 2011). One town and
two villages are distributed in this basin. The impacts of the
Wenchuan earthquake still pose threats to the local people
because it is expected that debris flows following the earth-
quake will occur for at least 20 years (Yu et al., 2014).

4.2 Estimation of economic loss associated with
buildings

4.2.1 Determination of physical vulnerability

To estimate the potential physical damage of the buildings
in the Longxihe Basin, the developed prediction model was
applied to predict the potential impact pressure on buildings.
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Table 2. Physical vulnerability matrix.

Pt Building HD< 30 m 30<HD<100 m

(kPa) structure 4<VD 4<VD<10 10<VD<15 4<VD 4<VD<10 10<VD<15

<30 RC frame 0.3 0.2 0.1 0.2 0.1 –

Non-RC frame 0.8 0.7 0.6 0.7 0.6 0.4

30–70 RC frame 0.6 0.5 0.4 0.5 0.4 0.2

Non-RC frame 1 0.9 0.8 0.9 0.8 0.6

70–100 RC frame 0.7 0.6 0.5 0.6 0.5 0.3

Non-RC frame 1 1 0.9 1 0.9 0.7

>100 RC frame 0.8 0.7 0.6 0.7 0.6 0.4

Non-RC frame 1 1 0.9 1 1 0.8

Pt Building 100<HD<160 m 160<HD<230 m

(kPa) structure 4<VD 4<VD<10 10<VD<15 4<VD 4<VD<10 10<VD<15

<30 RC frame 0.1 – – – – –

Non-RC frame 0.6 0.4 0.1 0.4 0.1 –

30–70 RC frame 0.4 0.2 – 0.2 – –

Non-RC frame 0.8 0.6 0.3 0.6 0.3 –

70–100 RC frame 0.5 0.3 – 0.3 – –

Non-RC frame 0.9 0.7 0.4 0.7 0.4 –

>100 RC frame 0.6 0.4 0.1 0.4 0.1 –

Non-RC frame 1 0.8 0.5 0.8 0.5 0.1

Figure 9. The Longxihe Basin located in the north-western part of
Dujiangyan, China, with a total area of 70.56 km2 and elevation
ranging from 794 m to 3245 m.

As illustrated in Fig. 10c, the debris-flow catchments within
this basin were generated. We mainly focus on the regions
with buildings and estimate the possible economic loss as-
sociated with the buildings when debris flows occur. There-
fore, we extracted a total of 386 buildings in three regions
based on the Gaofen-2 satellite images (Fig. 10a, b, d, and
e). After that, we selected the catchments that are the nearest
to the buildings to conduct analysis (see catchments marked
with red lines in Fig. 10c). The input information for these
catchments for impact pressure prediction and the predicted
results are all listed in Table 3.

In addition to the predicted impact pressures to the build-
ings by the potential debris flows, the horizontal and vertical
distances between each building and the nearest debris-flow
channel were measured using a GIS. As a result, the physi-
cal vulnerabilities of the buildings in Longxihe Basin can be
decided based on the proposed physical vulnerability matrix,
and the results are shown in Fig. 11a–d.

The statistical results in Table 4 illustrate that most build-
ings suffer nearly no damage when a debris-flow event oc-
curs. This is because these buildings are RC frame struc-
tures, which allow them to remain undamaged or only suf-
fer slight damage even though they are close to the debris-
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Figure 10. (a, b, d, e) Residential areas in the Longxihe Basin with highlighted buildings and (c) the debris-flow catchments that were
prepared for the establishment of the impact pressure estimation model for future debris flows.

Table 3. Prediction results using developed prediction model.

No. A (km2) L (km) R (m) J Predicted
Pt (kPa)

1 0.4226 0.70 116 0.3024 22.0
2 0.8849 1.00 123 0.3503 26.7
3 0.1447 0.25 113 0.4055 18.0
4 2.9068 0.91 145 0.1668 22.1
5 0.3637 0.58 125 0.2998 19.2
6 0.9317 0.88 130 0.2551 20.9
7 4.1780 1.84 141 0.0751 16.0
8 0.1632 0.61 117 0.3419 19.3
9 0.0932 0.69 112 0.3622 17.3
10 0.1087 0.69 112 0.3542 17.5
11 0.2355 0.73 159 0.6828 16.5
12 1.3027 1.46 145 0.3944 25.2
13 2.8095 1.30 158 0.2466 26.5
14 0.3802 0.89 129 0.4299 19.2
15 0.2177 0.70 136 0.5690 15.8
16 0.1529 0.84 162 0.6821 14.4
17 3.5789 2.23 153 0.3047 33.6
18 0.3179 0.69 127 0.5400 17.4
19 0.1970 0.74 96 0.4056 15.0
20 0.2201 0.90 110 0.4599 13.0

flow channels. However, non-RC frame buildings may al-
ways suffer severe damage during a debris-flow event if their
locations are near the channels. As indicated in Fig. 11a–d,
the buildings with high and very high physical vulnerabilities
are mainly brick and light steel structures. The difference in

Table 4. Statistical results of the buildings with different physical
vulnerabilities.

0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1.0

Number 237 52 45 18 34
Percentage 61.4 % 13.5 % 11.6 % 4.7 % 8.8 %

resistance ability allows a greater possibility for RC frame
buildings to remain undamaged during the same debris-flow
event when compared to a non-RC building, which is consis-
tent with the field investigation results illustrated in Fig. 4b.
Moreover, a non-RC frame building can also avoid damage
even though it is close to the debris-flow channel. This is
because a higher vertical distance to the debris-flow chan-
nel can allow this non-RC building to suffer no damage or
light damage. Therefore, a comprehensive analysis that con-
siders the structure type, spatial distances to the debris-flow
channel, and potential impact pressure is significant in estab-
lishing a reliable physical vulnerability matrix to benefit the
determination of the potential damage degree for buildings.

In order to validate the efficiency and accuracy of our
method in estimating the physical damage to buildings,
the damaged buildings caused by debris flows on 13 Au-
gust 2010 are employed here. As depicted in Fig. 12a, the
RC frame buildings suffer moderate damage (see red circles
in Fig. 11a) because there was no obvious damage of exter-
nal or internal walls observed during the field investigations
based on the HAZUS building classification scheme (Rojahn,
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Figure 11. (a–d) Physical vulnerabilities of the buildings for resi-
dential areas of the Longxihe Basin corresponding to Fig. 10a, b, d,
and e.

1988). However, the debris-flow event caused extensive dam-
age (see yellow circle in Fig. 11a) to the brick structures due
to the partly destroyed external or internal walls (Fig. 12b).
As a result, evacuation of people was necessary and recon-
struction was required. Overall, our proposed method can
provide a reliable evaluation of the physical vulnerability of
buildings caused by a debris-flow event and therefore benefit
the estimation of economic loss.

4.2.2 Economic loss

Based on the estimated physical damage, we can further pro-
vide a reliable estimation of the economic loss. Six categories
of buildings were identified in this study area based on the
field investigations. They are residential buildings (divided
into RC frame and brick structure), business buildings, fac-
tory buildings, office buildings, and livestock houses.

The economic value of a residential building in this area is
based on the market price, which is provided by the Housing
and Urban-rural Construction Agency. As for the unit price
of a business building, we refer to the price ratio of a resi-

dential building and a business building in the city centre of
Dujiangyan. The unit price of a business building is normally
30 % higher than that of a residential building. An office
building belongs to national assets, which cannot be rented
or sold. However, possible damage still cannot be avoided if
a debris-flow event occurs, and restoration or reconstruction
might be required. Therefore, we refer to the unit price of a
residential building to estimate the economic loss of an of-
fice building. Unlike the high construction cost and business
value of a residential building and a business building, the
construction cost of a factory building is low because of its
light steel structure. Meanwhile, this kind of building is nor-
mally situated at a distance from the city centre and residen-
tial areas, primarily to mitigate effects of noise and environ-
mental pollution. Most importantly, a factory building invari-
ably occupies a large area, potentially raising the construc-
tion cost when situated in the city centre due to exorbitant
land prices. Considering the average market price of a fac-
tory building, we set the unit price as EUR 237.57 per square
metre. Finally, livestock houses are considered here since two
villages are included in the analysis where livestock houses
have been built for sheep and cattle. The unit price of a live-
stock building is low (see Table 5). The economic loss asso-
ciated with the buildings in the Longxihe Basin is presented
in Fig. 13.

The distribution characteristics of economic loss are dif-
ferent from physical vulnerability. For example, Fig. 11a
illustrates that the buildings are more likely to suffer se-
vere damage if they are close to the debris-flow channel, es-
pecially the non-RC frame structures. However, these non-
RC frame buildings require lower reconstruction or restora-
tion costs when compared to the RC frame buildings (see
Fig. 13a). In this case, the economic loss is low since it relies
on the multiplication of physical vulnerability and economic
value of a building (see red circles in Fig. 13b). As indicated
in Fig. 13d, the factory buildings (see Figs. 11d and 13d) may
suffer an economic loss of EUR 3.2× 105. As for the reason
why a low unit price of a factory building (see Table 5) re-
sults in a high economic loss may be due to the large area of
this factory building. Therefore, the site selection of a factory
building is significant. Although the location of the factory
buildings in mountainous areas can avoid noise pollution in
urban development and decrease construction costs, the pos-
sible economic loss caused by natural hazards cannot be ne-
glected. Additionally, the residential building should not be
built on the outlet of the debris-flow catchment directly op-
posite (see red circles in Fig. 13d), especially when the foun-
dation of the residential buildings is only slightly higher than
the riverway (see yellow contours in Fig. 13d). For example,
the highest economic loss is found for a residential building
(see Fig. 13d), reaching EUR 5.1× 105. Therefore, residen-
tial building (RC frame) foundations of at least 4 m depth are
essential if the buildings are close to the debris-flow channel
(based on Table 2). Overall, the analysis of economic loss for
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Figure 12. (a) The RC frame buildings which suffered moderate damage with no obvious damage of external and internal walls caused by
a debris-flow event on 13 August 2010 and (b) extensive damage to brick buildings (non-RC frame structure) observed during the same
debris-flow event.

Table 5. Unit price (P ) of a building in this area.

Element Categories Unit price Value based on

Buildings Residential buildings (RC frame) EUR 1050.44 per square metre Average market price

Residential buildings (brick structure) EUR 158.38 per square metre Construction cost

Business buildings (RC frame) EUR 1371.47 per square metre Average market price

Office buildings (RC frame) EUR 1050.44 per square metre –

Factory buildings (light steel structure) EUR 237.57 per square metre Construction cost

Livestock houses (brick structure) EUR 7.92 per square metre Restoration and reconstruction cost

buildings in mountainous areas can provide decision-makers
with guidance about urban planning.

5 Discussion

The proposed integrated method has been applied for the de-
termination of the damage degree for buildings in the Longx-
ihe Basin, Sichuan, China. The involvement of debris-flow
intensities, building attributes, and spatial position between
the buildings and debris-flow channel can help to suggest
a more reasonable damage degree value caused by debris
flows. Specifically, the debris-flow intensity is expressed in
impact pressure here, which can indicate the possible conse-
quence of a building if the flowing materials strike the build-
ing directly. However, an overestimation of the damage de-
gree may be caused since the spatial positions between the
building and debris-flow channel do not constitute a one-
dimensional problem. In general, the elevation of a building
is greater than that of the debris-flow channel in the horizon-
tal direction. This is because the long-term water flow and
historical debris flows move the soils and rocks, causing ero-
sion of the channel bottom and therefore decreasing its eleva-

tion. As a result, the elevation difference between the build-
ings and the debris-flow channel could cause a loss of impact
pressure. Therefore, simply utilizing impact pressure is not
enough to reflect the actual damage to a building. In contrast,
the introduction of HD and VD is an effective supplement to
improve the estimation of physical damage that the buildings
may suffer. Furthermore, the damage degree may vary when
subjected to different building structures. In this case, two
major types of buildings are considered in this study to dis-
tinguish the impact resistance capacities of different building
types. Overall, this developed matrix comprehensively de-
scribes the factors impacting the damage degree for buildings
caused by debris flows.

By utilizing the proposed matrix, we can estimate the dam-
age degree for a building. However, the possible damage in
future scenarios is still unclear due to the change in debris-
flow magnitude. Therefore, an ensemble machine learning
(ML) model is used to predict the volume of a future debris-
flow event so that the debris-flow intensities can be calcu-
lated based on empirical relationships. This ML method can
effectively avoid over-fitting when training prediction mod-
els due to the existence of a regular term. Most importantly,
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Figure 13. (a–d) Estimated economic loss of the buildings for resi-
dential areas of the Longxihe Basin corresponding to Fig. 10a, b, d,
and e.

the strong ability to establish a reliable relationship between
a group of independent variables and a dependent variable
enables a wider application of ML methods when compared
to empirical and regression methods. Therefore, a precise
prediction can be expected based on the established relation-
ship using the ML method to indicate the potential damage to
buildings caused by a future debris-flow event. However, we
are also aware that the current sample size may not support
robust performance in estimating impact pressure on build-
ings. For broader applications, continuous input of debris-
flow data globally is essential, which may be beyond the
scope of this study. However, further improvement can also
be achieved if the floors of buildings are considered when
developing the physical vulnerability matrix. This is because
the degree of loss presents a negative correlation with the
number of floors (Fuchs et al., 2019). Nevertheless, the limi-
tation cannot alter the fact that our work can benefit the sub-
division of buildings into different vulnerability levels and
provide suggestions about the site selection of future resi-
dential areas.

6 Conclusions

In this paper, an integrated method for vulnerability assess-
ment of buildings caused by future debris flows was pro-
posed. This method includes a physical matrix and a ma-
chine learning model, in which this matrix was developed
by considering the debris-flow process, building structure,
and spatial positions between the buildings and debris-flow
channels. To be more specific, the debris-flow process is rep-
resented by impact pressure (Pt), which can be estimated
based on the debris-flow volume through field investigations.
As for the definition of spatial positions, HD and VD are
used to describe the position relation between the buildings
and the debris-flow channel. By combining the three param-
eters, the actual impact pressure on the buildings can be de-
cided. However, the damage degree may vary for different
building structures. Therefore, the building structure is fur-
ther considered to provide a precise estimation of the build-
ings, including the RC frame and non-RC frame (brick struc-
ture, light steel structure, and masonry structure). Therefore,
a total of six types of buildings are included in this study.
They are residential buildings (divided into RC frame and
brick structure), business buildings (RC frame), office build-
ings (RC frame), factory buildings (light steel structure), and
livestock houses (brick structure). At the same time, an ML
model (XGBoost) was developed to predict the impact pres-
sure on buildings caused by future debris flows. On the basis
of the proposed physical vulnerability matrix and machine
learning model, we selected the Longxihe Basin, Sichuan,
China, to conduct a case study. The results show that the non-
RC buildings may be more likely to suffer severe damage
if they are close to the debris-flow channels. The buildings
with high and very high physical vulnerabilities are mainly
brick and light steel structures. The factory buildings bear
the highest economic loss, reaching EUR 2.41× 105 due to
their large area. In addition, severe economic loss may occur
if the buildings are located directly opposite the outlet of the
debris-flow catchment. Overall, our studies can achieve a re-
liable assessment of the physical damage and corresponding
economic loss of buildings and therefore provide suggestions
and scientific support for the future construction planning of
buildings.

Appendix A: Mechanism of XGBoost

The mechanism of XGBoost is to constantly develop a new
decision tree which acts as a weak learner and fits the residual
error of the last prediction. After the training of a total of k
trees, the final prediction result is the sum of the score of
each leaf node in each developed tree. The target function of
regression in XGBoost is

L(φ)=

m∑
i=1

l (yi, ŷi)+

t∑
k=1

�(fk) , (A1)
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where
m∑
i=1
l (yi, ŷi) represents the loss function and

t∑
k=1

�(fk)

is the regularization term. ŷi and yi are prediction value and
true value, respectively. m is the number of samples. fk is
the kth tree model. As mentioned above, the newly generated
tree needs to fit the residual error of the last prediction, and
therefore the prediction result can be presented as

ŷi
t
= ŷi

(t−1)
+ ft (xi) . (A2)

Equation (A3) is substituted into Eq. (A2) to rewrite the ob-
jective function as

L(φ)=

m∑
i=1

l
(
yi, ŷi

(t−1)
+ ft (xi)

)
+

t∑
k=1

�(fk) . (A3)

Furthermore, Taylor’s second-order expansion is introduced
to find fk to minimize the objective function:

L(φ)=

m∑
i=1

[
l
(
yi, ŷi

(t−1)
)
+ gift (xi)+

1
2
hif

2
t (xi)

]

+

t∑
k=1

�(fk)+ constant, (A4)

where gi is the first derivation and hi represents the second
derivation.
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Appendix B: Calculation results of impact pressure Pt

Table B1. Dataset II for developing the impact pressure prediction model.

No. A L R J Pt No. A L R J Pt
(km2) (km) (m) (kPa) (km2) (km) (m) (kPa)

1 8.55 3.13 269 0.1051 40.9 42 0.05 0.18 85 0.1908 10.3
2 4.68 1.41 126 0.2162 47.4 43 0.06 0.23 81 0.3038 14.2
3 12.88 4.16 269 0.1246 56.0 44 0.33 0.50 162 0.2792 18.4
4 0.29 0.50 95 0.1638 13.2 45 0.05 0.20 107 0.2661 12.2
5 0.29 0.29 200 0.4122 23.0 46 1.37 1.11 160 0.1763 34.1
6 5.73 0.71 260 0.1175 49.4 47 4.83 1.96 277 0.2071 35.5
7 0.56 0.62 195 0.2475 29.3 48 1.33 0.50 258 0.5117 35.7
8 2.15 0.73 250 0.2736 24.2 49 0.17 0.62 231 0.4727 21.0
9 0.32 0.46 276 0.5452 23.0 50 12.47 3.61 366 0.1853 67.9
10 1.67 0.95 161 0.3699 32.3 51 0.46 0.88 189 0.3819 26.4
11 11.21 1.93 360 0.1512 34.1 52 1.63 1.98 148 0.3115 28.9
12 2.85 1.57 232 0.2568 28.3 53 1.34 1.00 158 0.1727 18.7
13 2.29 1.84 189 0.3581 46.6 54 0.24 0.43 151 0.2867 16.6
14 0.08 0.42 240 0.3561 16.6 55 0.39 0.75 120 0.1745 15.6
15 0.18 0.48 366 0.6976 13.0 56 0.02 0.1 132 0.5295 18.0
16 0.53 0.81 170 0.2943 22.5 57 2.56 1.23 127 0.0998 16.7
17 0.71 1.74 151 0.6494 166.9 58 1.62 0.71 229 0.1673 19.7
18 0.49 1.64 162 0.6494 181.2 59 0.49 1.41 182 0.3000 24.0
19 0.60 1.52 155 0.6469 155.1 60 0.21 0.66 215 0.5384 40.6
20 0.36 1.15 261 0.8214 127.6 61 0.29 1.31 133 0.5184 64.1
21 2.73 2.57 190 0.6771 88.2 62 0.85 1.75 163 0.4578 36.0
22 2.02 2.59 198 0.7028 94.9 63 1.71 2.06 145 0.3879 68.5
23 0.43 1.30 198 0.7729 94.7 64 1.27 2.16 183 0.3522 84.1
24 0.19 1.09 181 0.6873 79.2 65 0.89 2.07 127 0.3385 68.1
25 1.03 2.02 232 0.4369 51.2 66 0.49 1.20 168 0.5681 141.0
26 3.99 3.78 134 0.4061 36.8 67 0.75 1.58 327 0.5566 165.7
27 2.88 2.40 313 0.7107 66.5 68 0.37 0.52 199 0.3404 23.6
28 0.34 1.14 163 0.8571 102.6 69 0.77 0.76 115 0.1566 17.0
29 2.81 2.84 253 0.5250 80.8 70 0.31 0.87 178 0.1317 25.9
30 7.18 4.82 400 0.5139 102.4 71 0.36 0.35 261 0.4578 20.6
31 24.42 9.47 337 0.3153 20.2 72 2.62 1.39 321 0.3482 33.8
32 2.81 1.74 205 0.3191 31.8 73 0.84 1.39 199 0.4899 14.9
33 0.43 1.30 200 0.8012 47.5 74 2.72 2.56 528 0.1069 31.2
34 7.06 4.41 275 0.4473 84.1 75 5.85 0.86 365 0.2962 31.5
35 1.07 2.05 225 0.4431 71.0 76 2.61 1.28 388 0.5317 44.0
36 0.86 2.17 149 0.3979 70.6 77 5.45 2.82 261 0.5228 112.0
37 6.51 2.92 252 0.5029 110.7 78 3.51 0.99 227 0.3839 38.2
38 0.42 1.64 151 0.4813 149.0 79 7.09 2.29 293 0.1962 52.6
39 0.51 1.43 153 0.4899 153.1 80 0.02 0.21 110 0.4390 17.8
40 0.20 0.76 130 0.5520 51.6 81 2.06 1.92 160 0.3211 29.7
41 0.34 1.25 130 0.4942 56.5
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