Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-947-2022
https://doi.org/10.5194/nhess-22-947-2022
Research article
 | 
22 Mar 2022
Research article |  | 22 Mar 2022

Ground motion prediction maps using seismic-microzonation data and machine learning

Federico Mori, Amerigo Mendicelli, Gaetano Falcone, Gianluca Acunzo, Rose Line Spacagna, Giuseppe Naso, and Massimiliano Moscatelli

Related authors

Characterizing uncertainty in shear wave velocity profiles from the Italian seismic microzonation database
Federico Mori, Giuseppe Naso, Amerigo Mendicelli, Giancarlo Ciotoli, Chiara Varone, and Massimiliano Moscatelli
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-104,https://doi.org/10.5194/essd-2024-104, 2024
Preprint withdrawn
Short summary

Related subject area

Earthquake Hazards
Co- and postseismic subaquatic evidence for prehistoric fault activity near Coyhaique, Aysén Region, Chile
Morgan Vervoort, Katleen Wils, Kris Vanneste, Roberto Urrutia, Mario Pino, Catherine Kissel, Marc De Batist, and Maarten Van Daele
Nat. Hazards Earth Syst. Sci., 24, 3401–3421, https://doi.org/10.5194/nhess-24-3401-2024,https://doi.org/10.5194/nhess-24-3401-2024, 2024
Short summary
Forearc crustal faults as tsunami sources in the upper plate of the Lesser Antilles subduction zone: the case study of the Morne Piton fault system
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024,https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
The 2020 European Seismic Hazard Model: overview and results
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024,https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024,https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024,https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary

Cited articles

ALOS: https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm, last access: May 2021. 
Beyer, K. and Bommer, J. J.: Relationships between Median Values and between Aleatory Variabilities for Different Definitions of the Horizontal Component of Motion, Bull. Seismol. Soc. Am., 96, 1512–1522, https://doi.org/10.1785/0120050210, 2006. 
Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., and Paolucci, R.: Ground motion prediction equations derived from the Italian strong motion database, Bull. Earthq. Eng., 9, 1899–1920, https://doi.org/10.1007/s10518-011-9313-z, 2011. 
Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., and Augliera, P.: Pan-European ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods up to 3.0 s using the RESORCE dataset, Bull. Earthq. Eng., 12, 391–430, https://doi.org/10.1007/s10518-013-9525-5, 2014. 
Bouckovalas, G. D. and Papadimitriou, A. G.: Numerical evaluation of slope topography effects on seismic ground motion, Soil Dyn. Earthq. Eng., 25, 547–558, https://doi.org/10.1016/j.soildyn.2004.11.008, 2005. 
Download
Short summary
This work addresses the problem of the ground motion estimation over large areas as an important tool for seismic-risk reduction policies. In detail, the near-real-time estimation of ground motion is a key issue for emergency system management. Starting from this consideration, the present work proposes the application of a machine learning approach to produce ground motion maps, using nine input proxies. Such proxies consider seismological, geophysical, and morphological parameters.
Altmetrics
Final-revised paper
Preprint