Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-947-2022
https://doi.org/10.5194/nhess-22-947-2022
Research article
 | 
22 Mar 2022
Research article |  | 22 Mar 2022

Ground motion prediction maps using seismic-microzonation data and machine learning

Federico Mori, Amerigo Mendicelli, Gaetano Falcone, Gianluca Acunzo, Rose Line Spacagna, Giuseppe Naso, and Massimiliano Moscatelli

Data sets

Engineering Strong Motion Database (ESM) flatfile Istituto Nazionale di Geofisica e Vulcanologia (INGV) https://data.ingv.it/dataset/404#additional-metadata

NEar-Source Strong-motion flatfile (NESS) Istituto Nazionale di Geofisica e Vulcanologia (INGV) https://data.ingv.it/dataset/446#additional-metadata

Data for: A new Vs30 map for Italy based on the seismic microzonation dataset Federico Mori, Amerigo Mendicelli, Massimiliano Moscatelli, Gino Romagnoli, Edoardo Peronace, and Giuseppe Naso https://doi.org/10.17632/8458tgzc73.1

ALOS Global Digital Surface Model "ALOS World 3D - 30m (AW3D30)" Advanced Land Observing Satellite (ALOS) https://www.eorc.jaxa.jp/ALOS/en/dataset/aw3d30/aw3d30_e.htm

Download
Short summary
This work addresses the problem of the ground motion estimation over large areas as an important tool for seismic-risk reduction policies. In detail, the near-real-time estimation of ground motion is a key issue for emergency system management. Starting from this consideration, the present work proposes the application of a machine learning approach to produce ground motion maps, using nine input proxies. Such proxies consider seismological, geophysical, and morphological parameters.
Altmetrics
Final-revised paper
Preprint