Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-947-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-947-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ground motion prediction maps using seismic-microzonation data and machine learning
Consiglio Nazionale delle Ricerche (CNR-IGAG), Istituto di Geologia
Ambientale e Geoingegneria, Area della Ricerca di Roma 1, Via Salaria km
29.300, 00015 Monterotondo (Rome), Italy
Amerigo Mendicelli
Consiglio Nazionale delle Ricerche (CNR-IGAG), Istituto di Geologia
Ambientale e Geoingegneria, Area della Ricerca di Roma 1, Via Salaria km
29.300, 00015 Monterotondo (Rome), Italy
Gaetano Falcone
Consiglio Nazionale delle Ricerche (CNR-IGAG), Istituto di Geologia
Ambientale e Geoingegneria, Area della Ricerca di Roma 1, Via Salaria km
29.300, 00015 Monterotondo (Rome), Italy
Gianluca Acunzo
Consiglio Nazionale delle Ricerche (CNR-IGAG), Istituto di Geologia
Ambientale e Geoingegneria, Area della Ricerca di Roma 1, Via Salaria km
29.300, 00015 Monterotondo (Rome), Italy
Rose Line Spacagna
Consiglio Nazionale delle Ricerche (CNR-IGAG), Istituto di Geologia
Ambientale e Geoingegneria, Area della Ricerca di Roma 1, Via Salaria km
29.300, 00015 Monterotondo (Rome), Italy
Giuseppe Naso
Presidenza del Consiglio dei Ministri, Dipartimento della Protezione
Civile (DPC), via Vitorchiano 2, 00189 Rome, Italy
Massimiliano Moscatelli
Consiglio Nazionale delle Ricerche (CNR-IGAG), Istituto di Geologia
Ambientale e Geoingegneria, Area della Ricerca di Roma 1, Via Salaria km
29.300, 00015 Monterotondo (Rome), Italy
Viewed
Total article views: 3,369 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Oct 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
2,302 | 982 | 85 | 3,369 | 226 | 67 | 79 |
- HTML: 2,302
- PDF: 982
- XML: 85
- Total: 3,369
- Supplement: 226
- BibTeX: 67
- EndNote: 79
Total article views: 2,265 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 22 Mar 2022)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
1,533 | 666 | 66 | 2,265 | 127 | 59 | 69 |
- HTML: 1,533
- PDF: 666
- XML: 66
- Total: 2,265
- Supplement: 127
- BibTeX: 59
- EndNote: 69
Total article views: 1,104 (including HTML, PDF, and XML)
Cumulative views and downloads
(calculated since 04 Oct 2021)
HTML | XML | Total | Supplement | BibTeX | EndNote | |
---|---|---|---|---|---|---|
769 | 316 | 19 | 1,104 | 99 | 8 | 10 |
- HTML: 769
- PDF: 316
- XML: 19
- Total: 1,104
- Supplement: 99
- BibTeX: 8
- EndNote: 10
Viewed (geographical distribution)
Total article views: 3,369 (including HTML, PDF, and XML)
Thereof 3,182 with geography defined
and 187 with unknown origin.
Total article views: 2,265 (including HTML, PDF, and XML)
Thereof 2,137 with geography defined
and 128 with unknown origin.
Total article views: 1,104 (including HTML, PDF, and XML)
Thereof 1,045 with geography defined
and 59 with unknown origin.
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Country | # | Views | % |
---|
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Total: | 0 |
HTML: | 0 |
PDF: | 0 |
XML: | 0 |
- 1
1
Cited
12 citations as recorded by crossref.
- Empirical shaking scenarios for Europe: a feasibility study D. Bindi et al. 10.1093/gji/ggac382
- Enhanced Seismic Ground Motion Modeling With Conditional Variational Autoencoder P. Neelamraju et al. 10.1002/eer2.70006
- Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts P. Lemenkova 10.3390/data7060074
- Seismic microzonation and soil-structure resonance analysis in Suryabinayak Municipality, Bhaktapur, Nepal: insights from ambient vibration measurements D. Sakhakarmi et al. 10.1080/19475705.2024.2311892
- Explainable Machine-Learning Predictions for Peak Ground Acceleration R. Sun et al. 10.3390/app13074530
- Seismic resilience-based strategies for prioritization of interventions on a subregional area M. Vona et al. 10.1007/s10518-024-02072-y
- Conditional generative adversarial networks for the generation of strong ground motion parameters using KiK-net ground motion records Z. Ba et al. 10.1016/j.asoc.2025.112730
- Seismic Acceleration Estimation Method at Arbitrary Position Using Observations and Machine Learning K. Lee et al. 10.1007/s12205-022-1235-6
- The Prediction Model of Seismic Variation in Complex Terrain based on the BP Neural Network with Cavities Y. Li & H. Zhou 10.1007/s00024-024-03589-8
- A machine learning estimator trained on synthetic data for real-time earthquake ground-shaking predictions in Southern California M. Monterrubio-Velasco et al. 10.1038/s43247-024-01436-1
- A scenario-based approach for immediate post-earthquake rockfall impact assessment M. Alvioli et al. 10.1007/s10346-023-02127-2
- Analysis of earthquake-prone areas based on the seismic wave velocity, young's modulus, shear modulus, and Poisson’s ratio for disaster risk reduction in Bengkulu city, Indonesia A. Hadi et al. 10.1007/s11069-024-06827-3
12 citations as recorded by crossref.
- Empirical shaking scenarios for Europe: a feasibility study D. Bindi et al. 10.1093/gji/ggac382
- Enhanced Seismic Ground Motion Modeling With Conditional Variational Autoencoder P. Neelamraju et al. 10.1002/eer2.70006
- Handling Dataset with Geophysical and Geological Variables on the Bolivian Andes by the GMT Scripts P. Lemenkova 10.3390/data7060074
- Seismic microzonation and soil-structure resonance analysis in Suryabinayak Municipality, Bhaktapur, Nepal: insights from ambient vibration measurements D. Sakhakarmi et al. 10.1080/19475705.2024.2311892
- Explainable Machine-Learning Predictions for Peak Ground Acceleration R. Sun et al. 10.3390/app13074530
- Seismic resilience-based strategies for prioritization of interventions on a subregional area M. Vona et al. 10.1007/s10518-024-02072-y
- Conditional generative adversarial networks for the generation of strong ground motion parameters using KiK-net ground motion records Z. Ba et al. 10.1016/j.asoc.2025.112730
- Seismic Acceleration Estimation Method at Arbitrary Position Using Observations and Machine Learning K. Lee et al. 10.1007/s12205-022-1235-6
- The Prediction Model of Seismic Variation in Complex Terrain based on the BP Neural Network with Cavities Y. Li & H. Zhou 10.1007/s00024-024-03589-8
- A machine learning estimator trained on synthetic data for real-time earthquake ground-shaking predictions in Southern California M. Monterrubio-Velasco et al. 10.1038/s43247-024-01436-1
- A scenario-based approach for immediate post-earthquake rockfall impact assessment M. Alvioli et al. 10.1007/s10346-023-02127-2
- Analysis of earthquake-prone areas based on the seismic wave velocity, young's modulus, shear modulus, and Poisson’s ratio for disaster risk reduction in Bengkulu city, Indonesia A. Hadi et al. 10.1007/s11069-024-06827-3
Latest update: 26 Jun 2025
Short summary
This work addresses the problem of the ground motion estimation over large areas as an important tool for seismic-risk reduction policies. In detail, the near-real-time estimation of ground motion is a key issue for emergency system management. Starting from this consideration, the present work proposes the application of a machine learning approach to produce ground motion maps, using nine input proxies. Such proxies consider seismological, geophysical, and morphological parameters.
This work addresses the problem of the ground motion estimation over large areas as an important...
Altmetrics
Final-revised paper
Preprint