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Abstract. Past seismic events worldwide demonstrated that
damage and death toll depend on both the strong ground mo-
tion (i.e., source effects) and the local site effects. The vari-
ability of earthquake ground motion distribution is caused by
the local stratigraphic and/or topographic setting and buried
morphologies (e.g., irregular sub-interface between soft and
stiff soils) that can give rise to amplification and resonances
with respect to the ground motion expected at the reference
site. Therefore, local site conditions can affect an area with
damage related to the full collapse or loss in functionality of
facilities, roads, pipelines, and other lifelines. To this con-
cern, the near-real-time prediction of ground motion varia-
tion over large areas is a crucial issue to support the res-
cue and operational interventions. A machine learning ap-
proach was adopted to produce ground motion prediction
maps considering both stratigraphic and morphological con-
ditions. A set of about 16 000 accelerometric data points and
about 46 000 geological and geophysical data points was
retrieved from Italian and European databases. The inten-
sity measures of interest were estimated based on nine in-
put proxies. The adopted machine learning regression model
(i.e., Gaussian process regression) allows for improving both
the precision and the accuracy in the estimation of the in-
tensity measures with respect to the available near-real-time
prediction methods (i.e., ground motion prediction equation
and ShakeMaps). In addition, maps with a 50 m× 50 m reso-
lution were generated, providing a ground motion variability
in agreement with the results of advanced numerical simula-
tions based on detailed subsoil models.

1 Introduction

Spatial distributions of ground motion induced by seismic
events should be properly estimated to support risk mitiga-
tion policies over large areas. Moreover, seismic-risk anal-
ysis, extended to spatially distributed anthropic systems,
presents new challenges in characterizing the seismic-risk in-
put, regarding the spatial correlation of the ground motion
values where the spatial correlation is the spatial character-
istics of the ground motion arising from similarities in the
seismic-wave paths and local site effects. The ShakeMaps
(Wald et al., 2021), provided by the US Geological Sur-
vey, are used globally for post-earthquake emergency man-
agement and response, engineering analyses, financial in-
struments, and other decision-making activities. Moreover,
in Italy post-event ShakeMaps are delivered by the Na-
tional Institute of Geophysics and Volcanology (Michelini
et al., 2019; ShakeMap, 2021). Such ShakeMaps are based
on ground motion prediction equation (GMPE; among oth-
ers Bindi et al., 2011) and data recorded from accelerometric
stations when available.

Recently, artificial-intelligence-based procedures were
proposed to produce near-real-time ground motion in terms
of acceleration time histories (Jozinović et al., 2021; Tamhidi
et al., 2021) and intensity measure (briefly, IM; among oth-
ers Kubo et al., 2020). In general, ground motion maps
were generated using earthquake source parameters (loca-
tion, magnitude, and the finite fault if available); IM (peak
ground acceleration, peak ground velocity, and spectral ac-
celeration, briefly named PGA, PGV, and Sa, respectively)
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at the recording accelerometric stations; and the mean shear-
wave velocity in the upper 30 m, VS30, as a proxy to account
for site lithostratigraphic amplifications. Having ShakeMaps
only when the first location and magnitude estimation are
available, Jozinović et al. (2021) propose to use waveforms
to predict the ground motion intensity by means of a ma-
chine learning (briefly, ML) approach (i.e., it utilizes only
a training set of earthquake waveforms recorded at a pre-
configured network of recording stations). Moreover, ML has
been adopted to produce seismic-amplification factors maps,
as in the Japan case study proposed by Kim et al. (2020),
rather than to provide ground motion maps. Finally, Zhou
et al. (2020) propose a seismic topographic-effect prediction
model.

Overall, the abovementioned works have pointed out the
following.

– Hypocentral depth (H ), epicentral distance (R), and
magnitude (M) are widely used to estimate ground
motion over large areas considering the source effect.
Moreover, H , R, and M are provided a few minutes af-
ter an earthquake.

– VS30, the fundamental frequency of the deposit (f0), and
the depth to the engineering bedrock (H800) are the key
parameters which gauge well the effect of local sub-
soil conditions on the seismic-wave propagation (i.e.,
lithostratigraphic effect). The only VS30 was used in the
adopted ML approach, since the Italian VS30 map was
provided by Mori et al. (2020a), while national f0 and
H800 maps are not currently available.

– Elevation (h), topographic gradients (hx and hy , where
x and y are two orthogonal directions), and second-
order topographic gradients (hxx and hyy) are proxies
which allow for describing the morphological effects on
the seismic-amplification phenomena.

In this view, this work focuses on the improvement of
ground motion prediction over large areas by using the
ML technique. The main task of this work is to suggest
a procedure including all the main key parameters to-
gether (i.e., H , R, M , VS30, h, hx , hy , hxx , and hyy).

The damage pattern induced by seismic events is related to
both geological/geomorphological conditions and the vulner-
ability of structures and infrastructures (Brando et al., 2020;
Fayjaloun et al., 2021; Mori et al., 2020b, 2019). The ground
motion prediction (i.e., seismic site response) is generally
evaluated by means of numerical simulations which are time
consuming and require well-detailed models capable of prop-
erly representing subsoil and topographic conditions (see, for
example, Bouckovalas and Papadimitriou, 2005; Falcone et
al., 2020a, b, 2018; Gatmiri and Arson, 2008; Gazetas, 1982;
Luo et al., 2020; Moscatelli et al., 2020b; Pagliaroli et al.,
2014; Pitilakis et al., 1999; Régnier et al., 2016, 2018).

Hence, the ML approach was adopted to

i implement the H , R, and M parameters available a few
minutes after a seismic event;

ii include both lithostratigraphic (VS30) and morphologi-
cal effects (h, hx , hy , hxx , and hyy);

iii capture the spatial correlation at short distances (hun-
dreds of meters) due to local site effects, which is es-
sential for reliable hazard assessments.

The main results of these elaborations are ground motion
prediction maps (i.e., PGA, PGV, and Sa) with the resolution
of 50 m× 50 m, which can reproduce the variability captured
by advanced numerical modeling.

Seismological data (i.e., H , R, M , PGA, PGV, and Sa)
retrieved from European and Italian networks (Luzi et al.,
2016, 2019, 2020); geological, geophysical, and geotechni-
cal data from seismic-microzonation (hereafter SM) studies
(DPC, 2021); and morphological data (ALOS, 2021) are pre-
sented in Sect. 2. The ML approach is discussed in Sect. 3. In
detail, the Sect. 3.1 is focused on the adopted ML approach
in terms of training and validation phase. Performances, pre-
sented in terms of root mean square error (RMSE) and resid-
uals (i.e., difference between the base-10 logarithms of ob-
served and predicted values of PGA, PGV, and Sa), are com-
pared to the results proposed by other studies (Jozinović et
al., 2021; Michelini et al., 2019; Bindi et al., 2011).

For the seismic sequence that hit central Italy in 2016–
2017, ML results and maps are shown in Sects. 3.2 and 4,
respectively. Referring to the seismic event that occurred
in central Italy on 30 October 2016, a test is proposed in
Sect. 3.2 in terms of residuals of the ground motion IMs (i.e.,
PGA, PGV, and Sa). Ground motion prediction maps for the
central Italy event that occurred on 24 August 2016 (i.e., the
first destructive event of the central Italy seismic sequence
for which a large number of studies have been published) are
shown in Sect. 4 to demonstrate the capability of the pro-
posed ML approach to gauge the ground motion variability
at the urban scale. Moreover, with reference to Sect. 4, the
ground motion profiles, based on the proposed ML approach,
are compared with results obtained by means of two com-
pletely different methodologies: 2D numerical modeling of
seismic site response (Gaudiosi et al., 2021; Giallini et al.,
2020; Grelle et al., 2020) and the mean values predicted by
the Italian ShakeMap (2021).

2 Input and output data for machine learning training
and validation

The input and output data for the training of the ML approach
were classified into three categories: seismological, geophys-
ical, and morphological data. The ML approach was based
on 15 779 seismological data points regarding the log10 ge-
ometric mean of the horizontal component (geoH) for each
IM (i.e., PGA, PGV, and Sa at 0.3, 1.0, and 3.0 s). Each value
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recorded by the accelerometric station, named output data in
Table 1 (i.e., data to be reproduced by means of ML), repre-
sents an observed datum. In addition, Table 1 lists the nine
used predictors, named input data. Figure 1 shows the loca-
tion of the selected accelerometric stations. Figures 2 and 3
show the input and output data, respectively, adopted for the
training phase of the selected ML approach and presented in
this section. Furthermore, some data distributions seem to be
imbalanced (e.g., magnitude,M , and elevation, h; Fig. 2). An
imbalanced training input dataset is characterized by an un-
equal distribution of values. For instance, focusing on Fig. 2
and the M distribution, the first and third quartiles are 4.1
and 5.1, respectively. Moreover, focusing on elevation dis-
tribution, the first and third quartiles are 136 and 761 m, re-
spectively. Consequently, when the ML algorithm learns the
imbalanced data (see, for example, Kubo et al., 2020), the
learning focus is mainly on the fit of ground motion with a
magnitude lower than 6 or on the fit of the site character-
ized by elevation lower than 1200 m. The imbalance of the
selected training input dataset seems to be caused by a sam-
pling bias, since no high-magnitude ground motions were
registered by the available accelerometric stations and since
few accelerometric stations have been installed at high ele-
vation, where the exposition at a seismic event is very low.
Hence, the training dataset cannot actually be improved. In
addition, distributions of topographic gradients and VS30 are
characterized by few data points with respect to steep slopes
and high VS30 values. How to handle the imbalanced dataset
in the regression problem was out of the scope of this work.
Consequently, referring to a range of an input datum, it is
expected that the lower the number of training data is, the
higher the uncertainty is. To this end, referring to the output
data, maps of the standard deviation are reported in Sect. 4.

Seismological parameters

Seismological parameters are retrieved from Italian and Eu-
ropean databases. Regarding 1435 recording accelerometric
stations, PGA, PGV, spectral accelerations (i.e., Sa at 0.3,
1, and 3 s), H , R, and M were retrieved from the Engi-
neering Strong-Motion Database, briefly ESM (Luzi et al.,
2016; ESM, 2021), and ITalian ACcelerometric Archive,
herein ITACA (Luzi et al., 2019). In detail, data regarding
the central Italy earthquake occurred in 2016 and recorded
by a temporary network named 3A have been archived only
in the ITACA database (ITACA, 2021). It is worth noting
that Greek and Turkish seismic-event data were collected to
consider an earthquake characterized by an M value greater
than 6.5 and up to 7.6. Moreover, an earthquake characterized
byH , R, and a log10 PGA value greater than 30, 400 km, and
2 cm s−2, respectively, were selected. It should be noted that
the ITACA and ESM selected data consider the shallow ac-
tive crustal region (i.e., SACR zone characterized by shallow
events, H<35 km, in agreement with Michelini et al., 2019).

The distributions of seismological data of the chosen events
are shown in Figs. 2 and 3. The same figures also show the
distribution of data described in the next part of this section.

Geophysical data

The dynamic site condition was described by means of the
time-averaged shear-wave velocity (VS) to a depth of 30 m,
the VS30 parameter. It is worth noting that the VS30 parame-
ter has been successfully adopted to gauge lithostratigraphic
effect on seismic-wave propagation by Falcone et al. (2021).
VS30 data (i.e., input data in the ML approach), determined
by means of in situ investigations, are also archived in the
ESM and ITACA databases. VS30 values were retrieved from
Mori et al. (2020a) for ESM and ITACA sites not character-
ized by in situ surveys. Figure 2 shows the distribution of the
VS30 data.

The VS30 map proposed by Mori et al. (2020a), based
on SM studies, was adopted here. The SM studies have
been carried out for the Italian municipalities through the
funds allocated after the 2009 L’Aquila earthquake, in the
framework of the Italian program for seismic-risk preven-
tion and mitigation (Moscatelli et al., 2020a). Approximately
4000 SM studies have been already planned, representing
about 99.8 % of the municipalities eligible for funding (i.e.,
having a 475-year return period PGA≥ 0.125 g). Out of the
4000 planned SM studies, about 75 % have been completed
and approved (DPC, 2021). The SM studies permitted the
collection, classification, and archival of geological, geo-
physical, and geotechnical data with a uniform approach fol-
lowing national standard criteria (SM Working Group, 2008;
TCSM, 2018). The data from in situ tests are organized
into a database and georeferenced through an appropriate
geographic information system (DPC, 2021). About 35 000
borehole logs and 11 300 VS profiles, related to about 1700
down-hole and 9600 MASW (multichannel analysis of sur-
face waves) tests, were extracted from the SM dataset. Start-
ing from the 11 300 VS profiles, VS30 values were calculated.
Mori et al. (2020b) derive a large-scale VS30 map for Italy,
starting from the global morphological classes after Iwahashi
et al. (2018), by integrating the large amount of data from the
Italian SM dataset. The VS30 map by Mori et al. (2020a) was
used here to integrate data where site-specific information
was not available.

Morphological data

The morphological elevation, h (i.e., an input morpho-
logical datum), was retrieved by the Advanced Land Ob-
serving Satellite (ALOS) World 3D-30m (herein AW3D30)
digital elevation model (DEM). The free version of the
DEM (ALOS, 2021) adopted here has 1 arcsec resolution,
which is equivalent to approximately 30 m at the Equator.
AW3D30 global DEM data were produced using the data
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Table 1. Input and output data for ML training and validation.

Type of data Category Control factors Database Reference

H Hypocentral depth Seismological database Luzi et al. (2016, 2020)
Seismological M Moment magnitude

R Epicentral distance

Geophysical VS30 Time-averaged shear-wave velocity
to 30 m depth

Seismological database
or VS30 map

Luzi et al. (2016, 2020),
DPC (2021),
Mori et al. (2020a)

h Elevation ALOS (2021)
Input hx First-order partial derivative,

dx (E–W slope)
Morphological hy First-order partial derivative,

dy (N–S slope)
ALOS World 3D-30m
DEM

hxx Second-order partial derivative, dxx
hyy Second-order partial derivative, dyy

PGA Peak ground acceleration Luzi et al. (2016, 2020)
PGV Peak ground velocity

Output Seismological Sa0.3 Spectral acceleration at 0.3 s Seismological database
Sa1.0 Spectral acceleration at 1 s
Sa3.0 Spectral acceleration at 3 s

acquired by the Panchromatic Remote-sensing Instrument
for Stereo Mapping operated on the ALOS from 2006 to
2011. The Japan Aerospace Exploration Agency, which is
the operator of the satellite, produced the global DEM us-
ing approximately 3 million images. Considering that the
AW3D30 model is the digital surface model which repre-
sents the canopy top and building roofs’ elevations, Caglar
et al. (2018) found that AW3D30 is the most accurate DEM
among other similar data elevation products freely available.
In detail, it was shown that the AW3D30 root mean square
error is equal to 1.78 m.

Finally, the GRASS GIS (Geographic Resources Analy-
sis Support System geographic information system) com-
mand r.slope.aspect (https://grass.osgeo.org, last ac-
cess: 1 September 2021) was used to generate the other mor-
phological proxies (i.e., hx , hy , hxx , and hyy). Such a com-
mand generates raster maps of first- and second-order partial
derivatives from a raster map of true elevation values (i.e.,
AW3D30 data in this study). Figure 2 shows the distribution
of the selected morphological data.

3 Method

The “MATLAB Regression Learner App” tool (https://it.
mathworks.com/help/stats/regression-learner-app.html, last
access: 1 September 2021) was employed to produce ground
motion prediction maps using a supervised ML approach.
With this application, users can choose the desired models
among many different methods to automatically train and
validate regression models. After training multiple models,

they can be compared to choose the best one. The application
includes commonly used regression methods such as linear
regression models, decision trees, support vector machines,
ensembles of tree models, and a Gaussian process regression
(GPR).

Figure 4 shows the adopted ML workflow. After having
imported and selected the data (input variables and output
variables), the training and validation phases begin. In these
phases the ML model that will be used is “adapted”, or rather
the algorithm is adapted to the training dataset. One of the
objectives of this phase is the tuning of the model, acting on
the hyperparameters (parameters whose value is used to con-
trol the learning process) of the algorithm to minimize errors.
The k-fold cross-validation technique was used in this work.
The models included in MATLAB Regression Learner App
tool have all been tested. The fitting performance (in terms
of RMSE) on the validation set was considered an indica-
tor of the generalization ability of models. Among the avail-
able models the best-fitting performance in terms of RMSE
was provided by the GPR model with an exponential ker-
nel (Table 2). GPR is a nonparametric, Bayesian approach
to regression, which provides uncertainty measurements on
the predictions. Moreover, a detailed description of the GPR
method is outside the scope of this work. Suggested refer-
ences for comprehensive descriptions of the GPR method are
Rasmussen and Williams (2006) and chapter 6 of MathWorks
(2019). The abovementioned k-fold cross-validation (k = 5)
method is described in chapter 24 of MathWorks (2019).

The second step is to test the model with the best per-
formance (GPR with an exponential kernel in this research),
adopting a dataset not included in the training and validation
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Figure 1. Location of selected dataset (i.e., 1435 accelerometric stations). © OpenStreetMap. Distributed under the Open Data Commons
Open Database License (ODbL) v1.0.

Figure 2. Distribution of input data for the training dataset.
N (%): counts (as a percentage).

phases. The dataset for the 30 October 2016 seismic event
was used, since the accelerometric data of many accelero-
metric stations are available. The test is used to evaluate the
accuracy of the model in terms of residuals (Eq. 1). In the
workflow of Fig. 4 there is also a phase (comparison) that
is not part of the standard ML methodology. The compari-
son with the ground shaking obtained by completely differ-

Figure 3. Distribution of output data for the training dataset in terms
of geoH IMs.

ent methodologies was used to further analyze the ML model
in terms of ground motion resolution and variability.

Training and cross-validation phases are described in
Sect. 3.1. Comparison in terms of residuals with the perfor-
mance of the existing methods (i.e., an external test) is pre-
sented in Sect. 3.2. The comparison with the ground shaking
obtained by completely different methodologies is presented
in Sect. 4.

3.1 Training and validation phases

The mean RMSE values of the five cross-validation datasets
were adopted to select the best ML approach. With reference
to the tested ML approaches, Table 2 lists the RMSE values
for each predicted IM.
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Figure 4. ML workflow adopted in this study. ∗ The selected test set was the input and output data for the 30 October 2016 seismic event.
∗∗ This element of the workflow is not part of the standard ML methodology. This element was introduced to enlighten the capability of the
adopted ML procedure in estimating local-scale ground motion variability. Comparison against predictions from ShakeMap and 2D numerical
simulations was based on 24 August 2016 seismic-event input and output data.

Referring to the best prediction model (i.e., GPR with an
exponential kernel) and to the training dataset, Fig. 5 shows
the comparison between predicted and observed values.

The performance of the GPR model is also presented in
terms of the mean value and standard deviation of the residu-
als’ distributions (Table 3), where the residual is defined ac-
cording to Eq. (1) in agreement with what was presented by
other researchers (Bindi et al., 2011; Jozinović et al., 2021;
Michelini et al., 2019). It should be noted that the mean and
standard deviation of the residuals’ distributions referred to
the ShakeMap and GMPE that were retrieved from the work
of Jozinović et al. (2021) to evaluate the performance of the
ML approach suggested in this study. It is worth noting that
the suggested ML approach provides the best performance
with respect to the approaches proposed by the other studies
in terms of both accuracy (mean value) and precision (stan-
dard deviation). In detail, the standard deviation values are

reduced by 45 %–60 %.

residual= log10

(
IMobserved

IMpredicted

)
(1)

Figure A1 in Appendix A1 shows the contribution of each
predictor variable to the reduction of the standard deviation
of the residuals’ distribution.

3.2 Testing phase

Input and output data for the 30 October 2016 seismic events
were selected as an external test dataset not included in the
training data. The seismic events in central Italy of 2016
and 2017 began in August 2016 with epicenters located be-
tween the regions of Latium, Marche, and Umbria. The first
strong shock occurred on 24 August 2016, at 03:36 and had a
magnitude of 6.0, with its epicenter located along the Tronto
River valley, between the small municipalities of Accumoli
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Table 2. RMSE for all ML prediction models used to forecast the log10 geometric horizontal mean (geoH) of PGA, PGV, and Sa at 0.3, 1.0,
and 3.0 s. The suggested reference for comprehensive descriptions of the ML prediction models is MathWorks (2019).

Performance in terms of RMSE

ML prediction model PGA PGV Sa(0.3 s) Sa(1.0 s) Sa(3.0 s)

Linear regression (linear) 0.53 0.47 0.50 0.44 0.43
Linear regression (interactions linear) 0.48 0.43 0.47 0.42 0.40
Linear regression (robust linear) 0.53 0.47 0.50 0.44 0.43
Stepwise linear regression (stepwise linear) 0.48 0.43 0.47 0.42 0.40
Tree (fine tree) 0.42 0.38 0.42 0.39 0.38
Tree (medium tree) 0.40 0.36 0.40 0.38 0.36
Tree (coarse tree) 0.40 0.36 0.40 0.37 0.36
Support vector machine (linear) 0.53 0.48 0.49 0.44 0.43
Support vector machine (quadratic) 0.43 0.39 0.42 0.39 0.39
Support vector machine (cubic) 0.40 0.36 0.40 0.37 0.36
Support vector machine (fine Gaussian) 0.48 0.46 0.48 0.45 0.46
Support vector machine (medium Gaussian) 0.37 0.34 0.38 0.35 0.34
Support vector machine (coarse Gaussian) 0.43 0.39 0.42 0.39 0.38
Ensemble (boosted trees) 0.40 0.36 0.40 0.37 0.36
Ensemble (bagged trees) 0.33 0.31 0.33 0.31 0.31
Gaussian process regression (squared exponential) 0.38 0.35 0.39 0.36 0.35
Gaussian process regression (Matérn 5/2) 0.37 0.34 0.38 0.34 0.34
Gaussian process regression (exponential) 0.31 0.30 0.33 0.30 0.29

Figure 5. Comparison between observed and predicted values referring to the output data (i.e., geoH in terms of PGA, PGV, Sa0.3, Sa1.0,
and Sa3.0).

and Arquata del Tronto. Two powerful replicas took place
on 26 October 2016, with epicenters on the Umbria–Marche
border, the first shock with a magnitude of 5.4 and the second
with a magnitude of 5.9. On 30 October 2016, the strongest
quake was recorded, with a moment magnitude of 6.5 with its

epicenter in the region of Umbria. On 18 January 2017, a new
sequence of four strong tremors with a magnitude greater
than 5 (with a maximum of 5.5) and epicenters located in
the region of Abruzzi took place. This set of events displaced

https://doi.org/10.5194/nhess-22-947-2022 Nat. Hazards Earth Syst. Sci., 22, 947–966, 2022
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Table 3. Referring to the training dataset (15 779 data points for each IM), comparison of mean and standard deviation values of the residuals’
distributions obtained in this study and those reported by other works (geoH stays for the geometric mean of the horizontal components).

IM This study (ML) ShakeMap GMPE

(geoH) Mean SD Mean SD Mean SD

PGA −0.000033 0.161 0.038 0.372 0.017 0.352
PGV −0.000015 0.156 0.041 0.380 −0.151 0.330
Sa0.3 0.000024 0.192 0.046 0.370 −0.252 0.359
Sa1.0 0.000028 0.160 0.017 0.374 −0.198 0.303
Sa3.0 −0.000072 0.159 −0.012 0.404 0.083 0.368

a total of about 41 000 persons and caused 388 injuries and
303 deaths.

In detail, the paper refers to the 30 October 2016 main
shocks, since according to the available data much more ac-
celerometric data are available, and it is therefore possible to
make more detailed and reliable analyses.

Mean and standard deviation values of the residuals’ dis-
tributions are presented in this section for the seismic event
that occurred on 30 October 2016 (briefly named the test
event), because it is the event with the most recordings of the
whole dataset (241 accelerometric stations). It is worth not-
ing that this event was not included in the dataset adopted for
the training phase of the ML approach. Noting that 943 seis-
mic events were characterized by M ≤ 6 and 25 earthquakes
byM>6 (see Fig. 3 for the training dataset), the central Italy
earthquake that occurred on 30 October 2016 (M = 6.5) pro-
vides a robust test of the adopted ML approach. The GMPE
proposed by Bindi et al. (2014) (hereafter also the Bindi
GMPE) was selected to estimate the IMs at the 241 sites of
interest aiming to compare the performances of the GMPE
and this ML approach. It should be noted that the Bindi
GMPE provides IMs depending on the VS30 as in this study.
Furthermore, the OpenQuake software (Pagani et al., 2014)
was used to determine the IMs values based on the selected
GMPE.

Mean and standard deviation values regarding the test
event (Table 4) are higher than those referred to in the train-
ing and validation phase (Table 3), as expected, because the
GPR model is trained on a few events with high magnitudes
as discussed in Sect. 2.

Moreover, mean and standard deviation values obtained in
this example are lower than those obtained by means of the
GMPE as shown in Table 4. In detail, the standard deviation
values are reduced by 20 %–30 %. Therefore, the overall per-
formance of the proposed ML approach is satisfactory also
at the highest magnitude.

Table 4. Comparison of mean and standard deviation values of
the residuals’ distributions obtained in this study and by means of
GMPE (Bindi et al., 2014), regarding the earthquake that occurred
on 30 October 2016 (241 data points for each IM; geoH stays for
the geometric mean of the horizontal components).

IM This study GMPE

(geoH) Mean SD Mean SD

PGA 0.0019 0.30 −0.19 0.43
PGV 0.0130 0.34 −0.16 0.42
Sa0.3 0.0170 0.32 −0.18 0.39
Sa1.0 −0.0550 0.35 −0.38 0.46
Sa3.0 −0.0360 0.39 −0.23 0.55

4 Ground motion prediction map for the central Italy
seismic event that occurred on 24 August 2016 and
comparison with numerical modeling

After having demonstrated the goodness of the proposed
method to reproduce IM values, this chapter presents exam-
ples of predictive maps produced by means of the exponen-
tial GPR model with a 50 m× 50 m resolution. In this section
the map for the 24 August 2016 central Italy seismic event is
produced to compare some significant IM profiles produced
with independent advanced numerical simulations and data
retrieved from ShakeMaps (2021).

The ground motion prediction map of the Sa0.3 reported in
Fig. 6 is one of the cartographic results of this study; maps
of PGA, PGV, and other spectral ordinates are in the Supple-
ment. Macroseismic intensities, I_MCS, retrieved by Galli
et al. (2017) are also reported next to the name of the vil-
lages in Fig. 6. These maps were chosen because the 0.3 s
period is the fundamental vibration period of most build-
ings in the area (i.e., two-to-three story buildings). Moreover,
0.3 s is compatible with the results of modeling provided by
Gaudiosi et al. (2021), Giallini et al. (2020), and Grelle et
al. (2020) for the same areas.

The map of Fig. 6 shows an output that is in good agree-
ment with the geophysical data (i.e., VS30 in Fig. 7) and ge-
omorphological data (i.e., elevation and slope in Figs. A2
and A3 in Appendix A2 and A3, respectively) and, there-
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Figure 6. Ground motion prediction map of Sa0.3 (resolution of 50 m× 50 m) regarding the central Italy earthquake that occurred on 24 Au-
gust 2016. I_MCS values retrieved by Galli et al. (2017) are reported next to the name of the villages. Squares A and B refer to the close-ups
at Arquata del Tronto and Amatrice, respectively. The surface active faulting, sketched in the figure, has been slightly modified after Galli et
al. (2017).

fore, highlights local site effects. In fact, referring to Fig. 6,
it should be noted that the highest Sa0.3 values describe the
valleys’ trend (i.e., the largest and continuous Tronto River
valley) and the two extended areas in the southern part of
the map (i.e., near the villages of Petrana and Torrita) well,
which are characterized by the lowest values of VS30 (Mori et
al., 2020a). Figure 8 shows the ShakeMap of Sa0.3 regarding
the central Italy earthquake that occurred on 24 August 2016
for the same area sketched in Fig. 6. As a general issue re-
ferring to the ShakeMaps, the higher the distance from the
epicenter is (the star in Fig. 8), the lower the predicted Sa0.3
is. Hence, the ShakeMaps does not provide ground motion
variability induced by the local site condition (i.e., subsoil
setting and topography). In detail, the ShakeMap provides an
Sa0.3 value equal to 0.36 g for the entire area of Arquata del
Tronto (square A in Fig. 8) and equal to 0.99 and 1.08 g for
Amatrice (square B in Fig. 8).

Referring to A and B close-ups in Fig. 6, Fig. 9 shows the
mean values of Sa0.3 on the left side and the standard de-
viation values on the right side. It should be noted that the

uncertainty is provided by a combination of the input data
values. The uncertainty increases referring to input data val-
ues for which the ML is not well trained (Figs. 2 and 3 and
discussion in Sect. 2). For instance, standard deviation values
around 0.3–0.4 are in the areas of inhabited villages, charac-
terized by input data values widely represented in the train-
ing dataset, while values in the range of 0.6–0.8 are observed
in correspondence with the combination of high slope val-
ues and high VS30 values, which are underrepresented in the
training dataset.

In addition to the maps, Fig. 10 shows the profiles (two at
Amatrice and one at Arquata del Tronto) of Sa at 0.3 s and the
comparison with the values of the same shaking parameter,
calculated with different methodological approaches: ground
motion prediction with an ML approach (this study), 2D nu-
merical simulations (modified after Gaudiosi et al., 2021; Gi-
allini et al., 2020; Grelle et al., 2020), and ShakeMap (2021).
All the models are defined for the geometric mean (geoH) of
the horizontal components. As ShakeMaps are released for
the maximum of the horizonal components, the ShakeMap
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Figure 7. VS30 maps for the area of interest shown in Fig. 6. It should be noted that two extended areas in the southern part of the map (i.e.,
near the villages of Petrana and Torrita) are characterized by the lowest values of VS30 inducing the highest Sa0.3 values (i.e., valley effect)
as shown in Fig. 6.

Table 5. Difference ε in percentage between Sa0.3 determined by
means of different methodologies and recorded values for the cen-
tral Italy earthquake that occurred on 24 August 2016.

Section BB’ Section CC’

εSa εSa
(%) (%)

This study −7 −14
Numerical −43 −44
ShakeMap −42 −40

values are converted to geoH according to the empirical rela-
tion proposed by Beyer and Bommer (2006). The three pro-
files were chosen because they represent three very different
geological and geomorphological structures: a narrow valley
(section AA’ in Fig. 10, Arquata del Tronto), a plateau of
soft ground (section BB’ in Fig. 10, Amatrice), the morphol-
ogy of a mountain peak covered with soft ground (section
CC’ in Fig. 10, close to Amatrice). As a matter of fact, the

adopted ML approach reproduces the so-called valley effect,
as in the case of the Arquata del Tronto shallow valley (see
the trend for 200≤ x ≤ 400 m in AA’); combined lithostrati-
graphic and topographic effects, as in the case of the village
of Amatrice (see the trend for 200≤ x ≤ 500 m in BB’); and
topographic amplification, as in the case of the AMT (Am-
atrice station code) accelerometric station (see the trend for
100≤ x ≤ 200 m in CC’). It should be noted that the trend of
the values of our study reproduces that of the numerical sim-
ulations and get closer to the recorded values at the Osser-
vatorio Sismico delle Strutture (OSS, a network of buildings
and bridges monitored in continuum by the Italian Civil Pro-
tection Department) site and AMT station (Luzi et al., 2019;
stars in BB’ and CC’). Moreover, the profiles provided by the
ML approach are much more articulated and complex than
the constant value (horizontal dashed line) of the ShakeMap,
which obviously fails to grasp the local site effects at this
scale. The difference between the different methodology and
the recorded values were quantified according to the follow-
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Figure 8. ShakeMap (slightly modified from ShakeMap, 2021) of Sa0.3 regarding the central Italy earthquake that occurred on 24 Au-
gust 2016. Squares A and B refer to the close-ups at Arquata del Tronto and Amatrice, respectively. From the center of the figure to the
border, the homogenously colored areas correspond to 1.20–1.50, 0.90–1.20, 0.60–0.90, 0.30–0.60, and 0.01–0.30 g intervals. It is evident
that the map does not capture the variability at short distances.

ing equation and are provided in Table 5.

εSa =
Sa0.3 estimated−Sa0.3 recorded

Sa0.3 recorded
· 100 (2)

5 Discussion and conclusions

Intensity and frequency contents of ground motions can be
altered by many factors. Up until now, numerous empirical
models of ground motion amplification have been developed
based on conventional regression analyses, considering a few
key factors such as intensity measures of rock motions, shear-
wave velocities of soils, and territory morphology. Since ma-
chine learning techniques have been applied to many fields,
this work investigated on efficacy of using such techniques
for developing models to predict ground motion over large
areas with a 50 m resolution raster.

A set of about 16 000 ground motion data points from Ital-
ian and European networks were adopted to train a Gaussian
process regression model, while recordings by 241 stations

of the seismic events occurred in Italy on 30 October 2016
were used to test the same model. Peak ground acceleration
and velocity, as well as spectral acceleration at three periods
(i.e., 0.3, 1, and 3 s), were compared to the recorded data, al-
lowing for obtaining residuals. With reference to the training
dataset, the mean value and standard deviation of the residu-
als’ distribution were found to equal about 0 and about 0.1,
respectively. With reference to the test dataset characterized
by a magnitude equal to 6.5, the mean value and standard de-
viation of the residuals’ distribution were found to equal 0.01
and 0.3, respectively. Hence, the performance of the adopted
machine learning technique was confirmed satisfactory also
for a magnitude higher than 6.

In addition, maps of ground motion in terms of peak
ground acceleration, peak ground velocity, and spectral ac-
celeration at the three selected periods were produced for the
central Italy seismic event that occurred on 24 August 2016.
Profiles of intensity measures were in satisfactory agreement
with those obtained by means of advanced numerical sim-

https://doi.org/10.5194/nhess-22-947-2022 Nat. Hazards Earth Syst. Sci., 22, 947–966, 2022



958 F. Mori et al.: Ground motion prediction maps using seismic-microzonation data and machine learning

Figure 9. Ground motion prediction maps (central Italy earthquake that occurred on 24 August 2016) regarding Arquata del Tronto (top) and
Amatrice (bottom) in terms of the Sa0.3 mean value (left) and standard deviation (right) (resolution of 50 m× 50 m). The base topographic
layer was retrieved from Regione Marche (2021) and Regione Lazio (2021) for Arquata del Tronto and Amatrice. The uncertainty estimation
is available at https://it.mathworks.com/help/stats/gaussian-process-regression-models.html(last access: 1 September 2021).

ulations of seismic site response referring to the same seis-
mic event. Moreover, the adopted machine learning approach
greatly improves the performance of existing methods for the
analyzed case studies.

Two main novelties of the work are synthesized in the fol-
lowing.

1. The forecast of ground motion with high resolution
(i.e., a 50 m× 50 m raster) is in agreement with re-
sults of local-scale numerical modeling. This outcome
is achieved by means of machine learning techniques
and large datasets including morphological, geologi-
cal, geophysical, and geotechnical features (mainly the
seismic-microzonation dataset; DPC, 2021). Moreover,
about 1000 seismic events recorded by 1435 accelero-
metric stations (ESM, 2021; ITACA, 2021) were ana-
lyzed. The machine learning approach combines mor-
phological and subsurface proxies: elevation, first- and
second-order topographic gradient (defining the mor-
phological characteristics of the territory), mean shear-
wave velocity in the upper 30 m (defining the dynamic

response of a site as induced by the subsoil condi-
tion), magnitude, and epicentral and hypocentral dis-
tances provide the source conditions.

2. Robust statistical techniques such as Gaussian process
regression were used. Among the machine-learning-
based models, the model developed by the regression
and Gaussian approach provides the best performance
in terms of both precision and accuracy, which are the
standard deviation and mean value of the residuals’ dis-
tribution, respectively.

In a nutshell, the novelty of this work is the use of the
machine learning approach based on the analysis of a huge
database of geological, geophysical, and geotechnical data,
built with seismic-microzonation studies for the entire Italian
territory. The quality and quantity of this database allow for a
robust application of machine learning including the predic-
tion of local site effects (i.e., lithostratigraphic and morpho-
logical) on the seismic ground motion.

In terms of applications, the ground motion maps gener-
ated by means of the proposed machine learning approach
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Figure 10. Profiles of Sa0.3 (top) for the central Italy earthquake that occurred on 24 August 2016 and simplified subsoil sections (bottom)
of Arquata del Tronto (section AA’) and Amatrice (section BB’ and section CC’). Cross sections’ locations are in Fig. 9. Sa0.3 profiles and
geological information retrieved and modified after Gaudiosi et al. (2021), Giallini et al. (2020), Grelle et al. (2020), and ShakeMap (2021).
The black stars indicate values recorded at the OSS site and AMT station (for details, see the text).

are useful both for urban planning (aimed at reducing seismic
risk) and for emergency management (aimed at a near-real-
time estimation of shaking scenarios). With reference to the
emergency phase, by knowing the position and depth of the
hypocenter and the magnitude of the event (in Italy these data
are available a few minutes after the event), it is possible to
produce ground motion maps in near real time. Overall, con-
sidering that the paradigm should be shifted from managing
disasters to managing risk, the proposed methodology could
represent a key tool in seismic-risk mitigation strategies de-
ployed both before and after the seismic event.

Evaluation of the spatial-correlation structure was studied
to provide the relation between local site effects and the spa-
tial resolution of ground motion maps; results of such an
analysis were not reported in the main text, since it is out
of the scope of this paper, while preliminary results in terms
of sill and range are reported in Appendix A4, referring to
the seismic event that occurred on 30 October 2016 (i.e., the
strongest of the central Italy seismic sequence).

In conclusion, the research on this topic will continue and
focus on specific goals, which include the following:

– improving the method with more input proxies which
are to be made available after the seismic-microzonation
project for the whole national territory (in detail, maps
of the depth to the engineering bedrock and of the fun-
damental frequency of the deposit will be soon available
and allow for using such parameters as input data for the
machine learning approach)

– improving the method with a worldwide seismological
dataset

– improving the spatial resolution of existing input prox-
ies integrating remote sensing data

– improving the spatial-correlation analysis.
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Appendix A: Spatial-correlation structure of the
predicted maps and some clarifications requested during
the revision phase

A1 The contribution of each proxy to the total
reduction in the standard deviation of the residuals
for the PGA

Figure A1. The contribution of each proxy to the total reduction in the standard deviation of the residuals for the PGA.

A2 Elevation map for the area of Figs. 6–8

Figure A2. Elevation map for the area of Figs. 6–8.
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A3 Slope map for the area of Figs. 6–8

Figure A3. Slope map for the area of Figs. 6–8.

A4 Spatial-correlation structure of the predicted maps

Here we want to preliminarily deal with the spatial corre-
lation of the IM parameters. In fact, the spatial correlation
of ground motion IMs represents a key issue in the seismic-
risk assessment, particularly in loss analysis (Infantino et al.,
2021; Schiappapietra et al., 2020, 2021). The geostatistical
tool widely adopted to analyze the spatial correlation of ge-
ological and geotechnical data (Paolella et al., 2021; Raspa
et al., 2008; Salvatore et al., 2019; Spacagna et al., 2018)
is the semi-variogram (Chilès and Delfiner, 2012). The spa-
tial structure is evaluated by assessing the dissimilarity of
the variables measured at different locations. First, referring
to the variable of interest (in this case, one of the selected
IMs), the experimental semi-variogram, γ̂ (h), is calculated
from data using the method of moments (Chilès and Delfiner,
2012):

γ̂ (h)=
1

2n(h)

∑n(h)

i=1
{z(xi)− z(xi +h)}

2, (A1)

where z(xi) and z(xi+h) are the observed values of the vari-
able z (i.e., one of the selected IMs) at the location xi and
xi+h separated by h and n(h) is the number of pairs at lag h.
Under the assumption of second-order stationary, the semi-
variogram increases with h up to a constant value of γ̂ (h).
In this study, to assess the spatial structure of the variables
(predicted IMs), the experimental variogram estimated from
the predicted maps is fitted with the best-fit model (i.e., the
exponential model):

γ (h)= C

[
1− exp

(
−3h
a

)]
, (A2)

where parameters a and C are called, respectively, range and
sill. The range defines the correlation distance, namely, the
separation distance at which the data are spatially indepen-
dent, and the sill represents the variance of the random pro-
cess, the limit value of γ (h).

For the central Italy event that occurred on 30 Octo-
ber 2016 and for all the predicted IM maps (i.e., PGA, Sa0.3,
and Sa1; see Fig. 6 and the Supplement), the spatial structure
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was performed with the gstat package (Pebesma, 2004)
of the R software program (R Core Team, 2021). The IM
values were extracted from the predicted maps with a regu-
lar punctual grid of 50 m× 50 m. The isotropic experimental
semi-variograms were computed and fitted with the above-
mentioned exponential model. As an example, Fig. A4 shows
the semi-variogram of the predicted Sa0.3 map. The spatial
structure of all predicted IM maps was characterized by the
nested exponential model. The nested variograms highlight
the presence of a double structure at different scales, i.e., a
short-scale and a long-scale variability.

In this case, two ranges and two sills are obtained for two
levels of variability. Table A1 shows the sill and range val-
ues for the nested exponential models of all predicted IM
maps. The first range, or short-scale structure, captures the
first source of variability (first sill) over hundreds of me-
ters induced by lithostratigraphic site conditions and mor-
phological variability. The long-scale structure captures the
variability over thousands of meters and could be referred to
regional geological units and large-scale morphological fea-
tures. Furthermore, a significant part of the variance, around
30 %–40 % of the total, is captured at the short scale.

Figure A4. Semi-variogram of the predicted Sa0.3 map (central Italy event that occurred on 30 October 2016): experimental variogram based
on the adopted ML approach and best-fitting model (nested exponential).

Table A1. Sill and range values of the nested exponential model for all the predicted IM maps.

Short-scale structure Large-scale structure

IM Sill Range (m) Sill Range (m)

PGA 0.01080 600 0.022550 28 500
Sa03 0.04250 450 0.108000 26 700
Sa1 0.00530 450 0.010500 21 600
Sa3 0.00022 750 0.000265 20 400

An exhaustive treatment of this topic is beyond the scope
of this work. We are now studying the spatial variability of
input parameters that contribute to generate the target IM
maps, and this will be the subject of a future paper. By the
way, the preliminary results enlighten the importance to gen-
erate ground motion prediction maps with a spatial resolution
on the order of hundreds of meters to improve their quality
in terms of predictivity. Seismic-hazard maps should also in-
clude these specifications to consider the short-scale effects,
even if starting from basic hazard maps with a resolution on
the order of 2–5 km.
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