Articles | Volume 19, issue 1
https://doi.org/10.5194/nhess-19-169-2019
https://doi.org/10.5194/nhess-19-169-2019
Research article
 | 
22 Jan 2019
Research article |  | 22 Jan 2019

Using cellular automata to simulate wildfire propagation and to assist in fire management

Joana Gouveia Freire and Carlos Castro DaCamara

Related authors

DRIVERS OF BURNED AREA PATTERNS IN CERRADO: THE CASE OF MATOPIBA REGION
P. S. Silva, J. A. Rodrigues, F. L. M. Santos, A. A. Pereira, J. Nogueira, C. C. DaCamara, and R. Libonati
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-3-W12-2020, 135–140, https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-135-2020,https://doi.org/10.5194/isprs-archives-XLII-3-W12-2020-135-2020, 2020
Wildland fire potential outlooks for Portugal using meteorological indices of fire danger
Sílvia A. Nunes, Carlos C. DaCamara, Kamil F. Turkman, Teresa J. Calado, Ricardo M. Trigo, and Maria A. A. Turkman
Nat. Hazards Earth Syst. Sci., 19, 1459–1470, https://doi.org/10.5194/nhess-19-1459-2019,https://doi.org/10.5194/nhess-19-1459-2019, 2019
Short summary
Fire danger rating over Mediterranean Europe based on fire radiative power derived from Meteosat
Miguel M. Pinto, Carlos C. DaCamara, Isabel F. Trigo, Ricardo M. Trigo, and K. Feridun Turkman
Nat. Hazards Earth Syst. Sci., 18, 515–529, https://doi.org/10.5194/nhess-18-515-2018,https://doi.org/10.5194/nhess-18-515-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Alexandridis, A., Vakalis, D., Siettos, C. I., and Bafas, G. V.: A Cellular Automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990, Appl. Math. Comput., 204, 191–201, https://doi.org/10.1016/j.amc.2008.06.046, 2008. a, b, c, d, e
Alexandridis, A., Russo, L., Vakalis, D., Bafas, G. V., and Siettos, C. I.: Wildland fire spread modelling using cellular automata: evolution in large-scale spatially heterogeneous environments under fire suppresion tactics, Int. J. Wildland Fire, 20, 633–647, https://doi.org/10.1071/WF09119, 2011. a, b, c
Amraoui, M., Liberato, M. L. R., Calado, T. J., DaCamara, C. C., Coelho, L. P., Trigo, R. M., and Gouveia, C. M.: Fire activity over Mediterranean Europe based on information from Meteosat-8, Forest Ecol. Manage., 294, 62–75, https://doi.org/10.1016/j.foreco.2012.08.032, 2013. a
Amraoui, M., Pereira, M. G., DaCamara, C. C., and Calado, T. J.: Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region, Sci. Total Environ., 524-525, 32–39, https://doi.org/10.1016/j.scitotenv.2015.04.032, 2015. a
ANPC: Tavira/Cachopo/Catraia ocurrence report 2012080021067, National Authority for Civil Protection, available at: https://www.bombeiros.pt/wp-content/uploads/2012/09/Relatorio-de-ocorrencia-2012080021067-Tavira_Cachopo_Catraia.pdf (last access: 17 January 2018), 2012. a
Download
Short summary
Cellular automata are useful tools to simulate wildfire propagation. We design a cellular automaton to simulate a severe wildfire that took place in Portugal in 2012 and resulted in almost 25 000 ha burned. The explosive stage is adequately modeled when refining the role played by the wind in fire spreading. Results show a probability of ignition out of the limits of the observed scar, information that may help choose where to allocate resources for firefighting.
Altmetrics
Final-revised paper
Preprint