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Abstract. Cellular automata have been successfully applied
to simulate the propagation of wildfires with the aim of
assisting fire managers in defining fire suppression tactics
and in planning fire risk management policies. We present
a cellular automaton designed to simulate a severe wildfire
episode that took place in Algarve (southern Portugal) in
July 2012. During the episode almost 25 000 ha burned and
there was an explosive stage between 25 and 33 h after the
onset. Results obtained show that the explosive stage is ad-
equately modeled when introducing a wind propagation rule
in which fire is allowed to spread to nonadjacent cells de-
pending on wind speed. When this rule is introduced, devia-
tions in modeled time of burning (from estimated time based
on hot spots detected from satellite) have a root-mean-square
difference of 7.1 for a simulation period of 46 h (i.e., less
than 20 %). The simulated pattern of probabilities of burning
as estimated from an ensemble of 100 simulations shows a
marked decrease out of the limits of the observed scar, indi-
cating that the model represents an added value to help de-
cide locations of where to allocate resources for fire fighting.

1 Introduction

Wildfires in the Mediterranean region have severe damaging
effects that are mainly caused by large fire events (Amraoui
et al., 2013, 2015). Restricted to Portugal, wildfires have
burned over 1.1 million ha in the last decade (San-Miguel-
Ayanz et al., 2017), and the recent tragic events caused by
the megafires of June and October 2017 have left a deep
mark at the political, social, economic and environmental
levels. Given the increasing trend in both extent and sever-

ity of wildfires (Pereira et al., 2005, 2013; DaCamara et al.,
2014; Trigo et al., 2005; Panisset et al., 2017), the availability
of modeling tools of fire episodes is of crucial importance.

Wildfire propagation is described in a variety of ways, be
it the type of modeling (deterministic, stochastic), type of
mathematical formulation (continuum, grid based), or type of
propagation (nearest neighbor, Huygens wavelets), and often
the formulation adopted combines different approaches (Sul-
livan, 2009; Alexandridis et al., 2011). For instance, the clas-
sic model of Rothermel (1972, 1983) combines fire spread
modeling with empirical observations, and simplified de-
scriptions such as FARSITE (Finney, 2004) neglect the inter-
action with the atmosphere, and the fire front is propagated
using wavelet techniques. Cellular automata (CA) are one of
the most important stochastic models (Sullivan, 2009); space
is discretized into cells, and physical quantities take on a fi-
nite set of values at each cell. Cells evolve in discrete time
according to a set of transition rules and the states of the
neighboring cells.

CA models for wildfire simulation prescribe local mi-
croscopic interactions typically defined on a square (Clarke
et al., 1994) or hexagonal (Trunfio, 2004) grid. The complex
macroscopic fire spread dynamics is simulated as a stochas-
tic process, in which the propagation of the fire front to
neighboring cells is modeled via a probabilistic approach.
CA models directly incorporate spatial heterogeneity in to-
pography, fuel characteristics, and meteorological condi-
tions, and they can easily accommodate any empirical or
theoretical fire propagation mechanism, even complex ones
(Collin et al., 2011). CA models can also be coupled with ex-
isting forest fire models to ensure better time accuracy of for-
est fire spread (Rui et al., 2018). More elaborated CA mod-
els that overcome typical constraints imposed by the lattice
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(Trunfio et al., 2011; Ghisu et al., 2015) perform compara-
bly to deterministic models such as FARSITE, however at a
higher computational cost.

In the present work, we set up a simple and fast CA model
designed to simulate wildfires in Portugal. As a benchmark,
we have chosen the CA model developed by Alexandridis
et al. (2008, 2011) that presents the advantage of having
been successfully applied to other Mediterranean ecosys-
tems, namely to the propagation of historical fires in Greece
to simulate fire suppression tactics and to design and imple-
ment fire risk management policies. This model further of-
fers the possibility of running a very high number of simu-
lations in a short amount of time and is easily modified by
implementing additional variables and different rules for the
evolution of the fire spread.

We then present and discuss the application of the
CA model to the Tavira wildfire episode in which approxi-
mately 24 800 ha was burned in Algarve, a province located
at the southern coast of Portugal. The event took place in
summer of 2012, between 18 and 21 July, and fire spread
in the municipalities of Tavira and São Brás de Alportel. The
Tavira wildfire was one of the largest fires in recent years (ex-
cluding the megaevents of the last fire season of 2017), and
most of the variables (e.g., total burned area, time to extinc-
tion) are well documented and available from official author-
ities (ANPC, 2012; Viegas et al., 2012). This fire event was
also studied by Pinto et al. (2016), providing a suitable setup
for testing the CA model. In addition, comparing the simu-
lation results to this baseline scenario allowed us to identify
and formulate the most promising model modifications and
refinements to be incorporated in the simulation algorithm.

This paper is organized as follows. Section 2 provides a
description of the fire event to be modeled and of all data
required for simulation and validation of results, and it also
gives an overview of the rationale behind the setting up of
the CA. Results obtained are presented in Sect. 3, and a dis-
cussion is made in Sect. 4, paying special attention to the
modeled temporal and spatial deviations from results derived
from location and time of detection of hot spots as identified
from remote sensing. Summary and conclusions are drawn
in Sect. 5.

2 Data and methods

2.1 The fire event of Tavira

As mentioned in the introduction, we apply a CA model
to a large and well-documented wildfire that occurred in
July 2012 in the Tavira and São Brás de Alportel municipal-
ities, located in Algarve, Portugal (Fig. 1). The fire was first
reported on 18 July (at about 13:00 UTC) and was considered
contained on 21 July (at about 17:00 UTC). The fire burned
approximately 24 800 ha, mainly shrublands that made up
about 64 % of the affected area, and spread in heteroge-

Figure 1. (a) Map of Portugal with the location of the Tavira wild-
fire, where orange represents the burned scar and the black frame
indicates the study area used in the simulations. (b, c) Schematic
representation of Europe with Portugal highlighted in blue (b) and
a zoom of the study area (c).

neous, undulated terrain. It was the largest wildfire in Por-
tugal in 2012, contributing to more than 22 % of the total
amount of 110 232 ha of burned area (ICNF, 2012) in that
year. Since 2012 was a year of extreme drought, the meteo-
rological background conditions were very prone to the oc-
currence of large fire events (Trigo et al., 2013).

The fire propagated in two distinct phases. In the first
stage, from 13:00 UTC on 18 July to 17:00 UTC on 19 July,
the fire burned about 5,000 ha, representing one-fifth of the
total burned area. In this phase, the wind direction was highly
variable and the fire advanced through rugged terrain, with
frequent shifts in the direction of maximum spread until it
reached the Leiteijo stream.

In the second stage from 17:00 to 24:00 UTC on 19 July
the fire turned into a major conflagration, greatly increas-
ing its propagation speed and burning about 20 000 ha in 7 h.
When the fire reached the Odeleite stream it became oro-
graphically channeled, as an increase in wind speed led to
fast and intense fire growth towards the south, where heavy
fuel loads were present. The fire split into two advanced sec-
tions heading west and east to the São Brás de Alportel and
the Tavira municipalities, with a 10 km wide fire front. In ad-
dition, spotting created new fires up to 2 km ahead of the fire
front. All these factors allowed rapid propagation of the fire
front while making suppression extremely difficult.
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Table 1. Assigned values to loadings of vegetation type (pveg) and
density (pdens).

Categories pveg

No vegetation −1
Agriculture −0.4
Forests 0.4
Shrubland 0.4

Categories pdens

No vegetation −1
Sparse −0.3
Normal 0
Dense 0.3

2.2 Input data

A study area of 30 km× 30 km was defined centered on the
burned area (Fig. 1) and fine-scaled raster data from various
sources were collected and preprocessed in a common format
suitable as input for the wildfire simulations. Data include
the ignition points, the start and end times of the fire event,
the fire perimeters, the burned areas, the surface wind speed
and direction, the topography, and information about the land
cover (vegetation type, vegetation density, areas burnt in pre-
vious wildfires, waterlines and roads).

Patch-slope information was derived from elevation data
as obtained from the digital elevation model provided by the
Shuttle Radar Topography Mission (Farr et al., 2007).

Hourly wind data were obtained from a regional weather
simulation performed with the Weather Research and Fore-
casting (WRF) model, version 3.1.1 (Skamarock et al.,
2008). The quality of the simulation was previously assessed
for wind (Cardoso et al., 2012; Soares et al., 2014). Wind-
Ninja (version 2.1.3) (Forthofer, 2007) was then used to spa-
tially model the hourly wind input data taking into account
the interaction with topography. The temporal behavior of the
wind field was then validated against the information con-
tained in the report by the Portuguese Institute for Nature
Conservation and Forests (ICNF) (ICNF, 2012).

Fuel type and density were derived by combining infor-
mation from CORINE Land Cover raster maps at 100 m res-
olution (CLC2006, 2019), the National Forest Inventories
produced by ICNF and the MODIS-based annual maximum
green vegetation fraction (Broxton et al., 2014). Vegetation
types were aggregated into four main categories: areas with-
out vegetation, agriculture, shrubland and forests (Fig. 2a).
The density of vegetation was also stratified into four cate-
gories: areas without vegetation and areas with sparse, nor-
mal and dense vegetation (Fig. 2b). As described in Sect. 2.3,
for the different categories of vegetation type and density,
values of the associated loadings, respectively pveg and pden,
were empirically assigned or taken from literature (Alexan-
dridis et al., 2008). Assigned values are listed in Table 1.

Figure 2. (a, b) Vegetation type (a) and density classes (b) inside
the study area as indicated by the discrete color bars. White corre-
sponds to areas without vegetation. (c, d) The roads (c) and water-
lines (d) identified inside the simulation area. Primary, secondary
and tertiary roads are represented, respectively, in red, orange and
green. Waterlines are all colored in blue.

Roads and waterlines inside the simulation area (Fig. 2c
and d) were also included in the model by assigning low val-
ues to loadings of both pveg and pdens, with pveg = pdens.
Primary, secondary and tertiary roads were assigned the val-
ues −0.8, −0.7 and −0.4, respectively, whereas the value
of −0.4 was assigned to the waterlines.

Active fire data as identified from satellites were used for
the quality assessment of the CA model simulations by eval-
uating temporal and spatial discrepancies between active fire
observations and simulated fire growth. For this purpose, we
used the MODIS (MODerate Resolution Imaging Spectro-
radiometer) active fire product that provides hot spots de-
tected at 1 km× 1 km pixel resolution, at the time of the
satellite overpass. The MODIS sensor on the Terra and Aqua
satellites supplies daytime and nighttime observations at four
nominal acquisition times, thus providing information about
the geographical location, date and time of the detected ac-
tive fires (Giglio et al., 2003).

For each satellite overpass totally or partially covering the
total burned area by the Tavira fire, we used the centroids
of the active fire footprints (Fig. 3a) to define a polygon con-
fined to the burn scar. Times of burning of cells inside the fire
scar were then estimated by bilinearly interpolating among
the outer limits of the defined polygons (Fig. 3b).

2.3 Baseline model

Simulations by the reference CA model developed by
Alexandridis et al. (2008) make use of a square grid with
propagation to the eight nearest and next-nearest neighbors
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Figure 3. Centroids of the active fires detected by MODIS (a) and
derived times of burning for the cells inside the burned scar (b).
Colors of the centroids and of the cells represent the elapsed time
(in hours) since the beginning of the fire event as indicated in the
color bars. The star represents the fire ignition point reported and
the black line the perimeter of the burned area.

(Fig. 4). Each cell (or site) is characterized by four possi-
ble discrete states, corresponding to burning, with fuel not
yet burned, fuel free and completely burned cells. The model
has four possible rules of evolution that take into account fuel
properties, wind conditions and topography. The rules are ap-
plied at each time step and are described as follows. Rule 1
states a cell that cannot be burned stays the same. Rule 2
states a cell that is burning down at present time will be com-
pletely burned in the next time step. Rule 3 states a burned
cell cannot burn again. Rule 4 states if a cell is burning down
at the present time and there are next-nearest neighbor cells
containing vegetation fuel, then the fire can propagate to its
neighbors with a probability pburn, which is a function of the
variables that affect fire spread.

Probability pburn of a given cell depends on a constant
reference probability that may be increased or decreased by
means of different loadings. The constant reference probabil-
ity p0 is the probability that a cell in the neighborhood of a
burning cell (containing a given type of vegetation and den-

Figure 4. The eight possible fire spread directions on the square
grid.

Figure 5. The baseline fire spread rule (N1) and the new wind prop-
agation rule (N2).

sity) starts burning at the next time step under no wind and
flat terrain. Loadings in turn depend on the vegetation type,
pveg, and vegetation density, pden; on topography, ps; and on
wind fields, pw. In its basic formulation pburn is set as

pburn = p0
(
1+pveg

)
(1+pden)pwps. (1)

As described in Sect. 2.2, in order to account for the ef-
fect of vegetation, both type and density were stratified into
discrete classes, and for each class a constant loading was
assigned as specified in Table 1.

The effect of the wind is modeled as

pw = exp[V (c1+ c2(cos(θ)− 1))] , (2)

where c1 and c2 are adjustable coefficients, V is the wind
speed, and θ is the angle between the wind direction and the
fire propagation direction. As expected, pw increases when
wind and fire directions are aligned.

The probability factor that models the effect of the terrain
slope is given by

ps = exp(asθs) , (3)

where θs is the slope angle of the terrain and as is a coefficient
that can be adjusted from experimental data. Slope angle θs
was derived from elevation data, E, according to

θs = atan
[
(E1−E2)/D

]
, (4)
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Figure 6. Simulated values of the total burned area (red curves) and of the burned area inside the perimeter of the fire scar (blue curves) in
units of the total area inside the perimeter as a function of c1 for fixed c2 = 0.131 (a) and as a function of c2 for a fixed c1 = 0.045 (b).

whereD is equal to the sizeL of the square cell when the two
neighboring cells are adjacent to

√
2L when the two cells are

diagonal. As expected this topography effect is higher when
the fire spreads uphill.

2.4 Modified model

In order to better mirror the role played by the wind in fire
propagation, a modification was introduced in the model by
means of a new rule that allows propagation to nonadjacent
cells with the aim of incorporating the effects due to fire spot-
ting (Fig. 5). In contrast with the baseline ruleN1 that at each
time step fire can only spread to its nearest and next-nearest
neighbors, according to the new rule N2, for each burning
cell at a given time step, fire propagation is modeled accord-
ing to the two following steps: apply the baseline wind rule
and determine the direction(s) of fire spread (if any) for each
cell in the next-nearest neighborhood. If (i) according to the
previous step, the fire propagates to a new cell, (ii) the wind
speed at the considered burning cell is above the threshold of
8 m s−1 and (iii) the angle between the wind direction and the
displacement vector (from the considered burning cell to the
newly ignited cell) is lower than π/10, then fire also spreads
to a number of other contiguous cells (along the displace-
ment vector), with the number of ignited cells depending on
the wind speed at the considered burning cell (Fig. 5).

The model with the new propagation rule N2 will be here-
after referred to as the modified model.

2.5 Simulations

The landscape was discretized into square cells with sizes of
100 m and the model free parameters were set according to
Alexandridis et al. (2008), i.e., with p0 = 0.58, as = 0.078,
c1 = 0.045 and c2 = 0.131. The time step of the model was
set by performing 100 simulations of the propagation of
fire inside the observed burned area under no-wind and flat-
terrain conditions. The time step was then estimated by di-
viding the observed time from the starting ignition up to fire
containment (46 h) by the mean number of time steps re-

quired to burn the entire area. The obtained time step was
about 20 min.

A sensitivity study was also performed to assess the ef-
fects of constants c1 and c2 on the propagation of fire (Eq. 2).
As shown in Fig. 6, simulated values of total burned area
and of burned area inside the perimeter of the fire scar in-
crease (decrease) with increasing c1 (increasing c2). More-
over, above (below) a certain threshold of c1 (c2), a pro-
gressive departure is observed between the simulated values
of total burned area and of burned area inside the perime-
ter of the fire scar, an indication that the simulated fire is
spreading out of the recorded limits. Choice of c1 = 0.045
and c2 = 0.131 (Alexandridis et al., 2008) represents a com-
promise between burning a large fraction of the area inside
the perimeter and spreading a small fraction outside.

The fire event was then modeled using a probabilistic ap-
proach based on ensembles of 100 model simulations and
the probability that a given cell burns was accordingly es-
timated by the fraction of runs in which that cell was mod-
eled as a burned one. Two different kinds of simulations were
performed, constrained and unconstrained. In the first kind,
burning was confined to the observed burned area by means
of an appropriate setting of the model parameters along the
boundary of the final observed scar. It may be noted that this
setting along the scar boundary is not an artificial device
since it reflects the known a posteriori fact that the shape
of the scar resulted from effective firefighting in locations
where changes in fuel types and the presence of roads make
fire propagation harder. In the second kind of simulations, no
other constraints were imposed other than the lattice.

3 Results

3.1 Constrained runs

Two different ensembles of 100 simulations were generated,
one with the baseline fire spread model and the other with the
modified model. Results obtained at four selected stages of
the fire are displayed in Fig. 7. When using the baseline rule
(Fig. 7a), and except for the slot at 25 h (after ignition) where

www.nat-hazards-earth-syst-sci.net/19/169/2019/ Nat. Hazards Earth Syst. Sci., 19, 169–179, 2019



174 J. G. Freire and C. C. DaCamara: Using cellular automata to simulate wildfire propagation

Figure 7. Probabilities of burning (%) for the baseline model (a) and for the modified model (b). Colors represent the percentage of burned
cells as indicated by the color bar in the bottom of the figure and white represents unburned cells. The star locates the fire ignition point,
the blue line is the perimeter of the burned area and the green circles represent active fires as detected by MODIS. Both simulations were
restricted to the burned area.
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Figure 8. Fraction of the burned area inside the perimeter relative
to the total area inside the perimeter of the fire scar (a), bias (b)
and root-mean-square difference (c) as a function of the probabil-
ity threshold for c1 = 0.045 and c2 = 0.131. The dashed lines cor-
respond to the baseline model and the solid lines to the modified
model.

there is a fair agreement between the simulated burned area
and the front lines of the fire as indicated by the hot spots
identified by satellite, the simulated burning is well behind
the fire front, an indication that the modeled propagation of
the fire is too slow. A strong contrast is observed when us-
ing the modified model (Fig. 7b). In this case, the modeled
burned areas spread much closer to the fire front as defined
by the hot spots. The exception is the slot at 25 h (after igni-
tion), where the modeled propagation of fire is faster than the
one suggested by the location of the hot spots. Conversely, it
is worth emphasizing that the explosive behavior of fire be-
tween slots at 25 and 33 h is well simulated when using the
new wind propagation rule.

Burned area in each one of the two ensembles was iden-
tified by assuming that a given pixel is a burned one when
the modeled probability that it burned is larger than a fixed
threshold. Each pixel identified as burned was assigned the
respective time step as an indicator of the modeled time of
burning. Time deviations were then computed by subtracting
the times of burning as derived from the hot spots identi-
fied by MODIS (Fig. 3b). Finally, three measures of quality
of the simulations were derived for different thresholds of
probability, namely the fraction of burned area (relative to
the total area inside the perimeter of the fire scar), the bias
(simulated time minus time derived from hot spots) and root-
mean-squared differences (between simulated time and time
derived from hot spots).

Figure 8 presents results obtained when using the model
with the baseline wind rule (dashed lines) and the modified

model (solid lines). In both cases, and as to be expected,
the fraction of burned area decreases with increasing val-
ues of the threshold (Fig. 8a), with the baseline model al-
ways presenting, for each threshold, lower values of burned
area than the modified model. The baseline (modified) model
presents positive (negative) values of bias for each thresh-
old (Fig. 8b), meaning that, on average, the simulations are
late (in advance) when compared with times derived from
satellites. In both cases, the bias increases with increasing
values of threshold, with the baseline model becoming more
and more biased and the modified model approaching zero
bias, although the rate of increase is smaller than the one of
the baseline model. Finally, the root-mean-square difference
(Fig. 8c) shows an opposite behavior in the two cases, with
values increasing (decreasing) with the threshold in the case
of the baseline (modified) model. When considering all to-
gether the three measures of quality of the simulations, the
modified one performs better than the baseline model and
choosing values of threshold between 0.4 and 0.6 represents
a good compromise in terms of simulated burned area and
simulated time of fire propagation.

Figure 9 presents the spatial distribution of fire propaga-
tion and of time deviations (simulated time minus time de-
rived from hot spots) for a probability threshold of 0.5. When
using the baseline wind rule (Fig. 9, upper panels), the model
shows a progressive delay in the propagation of fire, with the
isochrones of fire propagation attaining values larger than
46 h well before the fire front reaches the southern bound-
ary of the scar. This delay is reflected in the positive val-
ues of the deviations of modeled time of burning from the
one derived from satellite observations and it is worth noting
that the delay takes place during the explosive stage of the
fire between 25 and 33 h (Fig. 3b). When using the modified
model (Fig. 9, lower panels) the explosive stage of the fire is
much better modeled, albeit there is a too fast propagation of
the fire front during the first stage. This behavior is reflected
in the deviations that present negative values during the first
12 h and much lower positive values than the baseline model
between 25 and 33 h, an indication that the modified model
tends to be closer to the observations than the baseline model.
The overall behavior of both models is well summarized by
the respective values of bias and of root-mean-square differ-
ences: bias of 8.3 h (−4.4 h) of the baseline model (modified
model) is consistent with the too slow (too fast) propagation
of the modeled fire fronts whereas the root-mean-square dif-
ference of 12.9 h (7.1 h) points to a behavior closer to obser-
vations of the modified model.

The improved behavior of the modified model when com-
pared with the baseline model is also revealed when analyz-
ing the fraction of burned pixels of the scar in successive
periods of 6 h (Fig. 10). The most conspicuous feature is the
burning of more than 50 % of the total amount of burned cells
between 30 and 36 h. This explosive stage of the fire is com-
pletely missed by the baseline model, whereas the burned
area by the modified model reaches 30 %. When the fraction
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Figure 9. (a, b) Fire propagation using a threshold of 0.5 for probability of burning for a set of 100 random simulations of the baseline model
confined to the burned area (a) and of the modified model (b). Colors represent the elapsed time in hours after the fire ignites. (c, d) Time
deviations from the left panels relative to the active fires detected by MODIS. Red (blue) shading corresponds to a progressive delay (advance)
in fire propagation observed in the CA model, and light gray corresponds to an agreement between the CA model and the MODIS active
fires. The star represents the fire ignition point, the black line the perimeter of the burned area and white the unburned cells.

Figure 10. Percentage of the total number of burned cells as derived
from active fires (MODIS), the baseline model (N1) and the modi-
fied model (N2). Each triplet of columns corresponds to the burned
cells identified in the intervals [0, 6[, [6, 12[, [12, 18[, [18, 24[,
[24, 30[, [30, 36[ and [36, 42[ h.

of burned area estimated from remotely sensed hot spots is
small (between 0 and 6, 12 and 18, 18 and 24 h) both mod-
els tend to overestimate that fraction, especially the modified
model. Between 6 and 12 h, the burned fraction simulated
by the modified model is close to the burned area estimated

from hot spots, whereas the baseline model underestimates
that fraction. An opposite behavior occurs in the last inter-
val, between 36 and 42 h, when the fraction simulated by the
baseline is close to the fraction estimated from hot spots and
the modified model underestimates that fraction.

3.2 Unconstrained runs

When no constraints are imposed, the obtained pattern of
burning probabilities (Fig. 11a) shows a marked decrease
outside the limits of the burned scar and this may be shown
by restricting the burned area to cells with a burning proba-
bility larger than 80 % (Fig. 11b). Unconstrained simulations
therefore indicate that the probability of burning is lower
beyond the actual perimeter of the fire scar as a result of
changes in fuel type, topographic effects and the presence
of linear interruptions such as roads.

4 Discussion

Two different ensembles of constrained runs were generated,
based on two models that were analogous except in the wind
propagation rule. In the baseline model, the wind rule only
applied to the nearest and next-nearest neighbors, whereas in
the modified model the neighborhood affected increased with
wind speed, reaching up to 10 cells. Results obtained pointed
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Figure 11. (a) Probabilities of burning (%) as derived from an ensemble of 100 unconstrained simulations of the modified model. The color
bar indicates the probability of burning. The star represents the fire ignition point, the black line the perimeter of the burned area and white
the unburned cells. (b) Burned sites identified above a threshold probability of 80 %. The blue arrows indicate locations where fire fighting
occurred, namely along the lateral sides of the burned scar and populated areas.

to a progressive delay in the propagation of fire simulated by
the baseline model that contrasted with a moderate advance
obtained with the simulations by the modified model. The
contrast in overall behavior of the two ensembles is reflected
in the obtained values of bias and root-mean-square devia-
tions between simulated times of burning of each cell and
respective estimated times from hot spots as identified by re-
mote sensing. The value of 8.3 h (−4.4 h) for bias in the case
of the baseline (modified) model indicates the overall delay
(advance) of the simulation, and the improved performance
of the modified model is suggested by the value of 7.1 h of the
root-mean-square difference that is more than 2 h lower than
the value of 12.9 h obtained with the baseline model. Differ-
ences between the two ensembles are conspicuous during the
explosive stage of the wildfire when about 55 % of the area
burned between 30 and 36 h after the fire onset. The baseline
model simulated less than 10 % (out of 55 %) of that area
whereas the modified model reached 30 %. The usefulness
of the modified model as a tool to assist fire managers in lo-
cating resources for firefighting during a fire event was tested
by performing a third ensemble of 100 simulations in which
the fire propagation is unconstrained and the simulations stop
by themselves. Results obtained show a marked decrease in
probability of burning outside the observed fire scar, suggest-
ing that this type of model may help decision-makers allocate
firefighting forces during a real fire event (Fig. 11b).

The flexibility to the introduction of changes in proper-
ties of individual cells (e.g., when imposing constraints to
fire propagation along the perimeter of the fire scar) as well
as of transition rules (e.g., the proposed one on the effects
of wind), together with the required low computational cost
(that allows us to perform a very large number of runs in a
short amount of time), make CA adequate tools to be used,
when either planning controlled fires or making decisions
about fighting in an operational scenario. For instance, we
are currently developing a mobile application (app) that al-

lows the user to run the proposed modified model over the
study area and modify the properties of the individual cells.

5 Summary and conclusion

In this paper we set up a CA model designed to respond to
wind-driven wildfires. The model is applied to a large wild-
fire event that took place in southern Portugal in July 2012.
In addition to its relevance in terms of burned area that
reached almost 25 000 ha, the event turned into a major con-
flagration between 25 and 33 h after the onset because of
orographic channeling accompanied by an increase in wind
speed. This explosive stage represented an ideal scenario to
test a CA model designed for wind-driven wildfires. The sim-
ulation of the wildfire propagation was made using a proba-
bilistic approach based on ensembles of 100 simulations that
allows estimation of the probability of burning of a given cell
by the fraction of runs in which that cell was modeled as a
burned one.

The proposed CA model with a wind rule that allows fire
propagation to nonadjacent cells represents an improvement
to the baseline model and reveals potential to be an added
value in fire management. In addition to introducing the ef-
fect of fire spotting, the new wind rule is also an attempt to
circumvent the problem of having a fixed time step for the
propagation of fire on a fixed lattice. Results indicate that
unconstrained simulations are a useful tool to assist decision-
makers during a fire event by providing indications about lo-
cations of low burning probability to be selected as appro-
priate for allocating resources for fire fighting. Currently the
model is being tested in different scenarios, namely with the
very large fire events that took place in Portugal in June and
October 2017.

It is worth mentioning that the transition rules that were
used in the CA model do not take into consideration either
the state of stress of vegetation or the meteorological condi-
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tions. In line with Alexandridis et al. (2011), incorporation
of these two aspects is currently being considered by asso-
ciating probability factors with the Drought Code (DC) and
with the Fine Fuel Moisture Code (FFMC), two indices of
the Canadian Fire Weather Index System that respectively
provide a numerical rating of seasonal drought effects and of
the ease of ignition, and the flammability of fine fuel at the
daily level (Wagner, 1974, 1987; Pinto et al., 2018).

Finally, it may be noted that results from the CA models
are presented in terms of probability of burning as an out-
come of ensembles of runs. This raises the issue of providing
information of model uncertainty that is especially relevant if
the CA model is to be used as a decision-making support tool.
As discussed in Fischhoff and Davis (2014), characterizing
model uncertainty involves identifying key outcomes, char-
acterizing variability as well as internal and external validity,
and finally summarizing uncertainty. Presentation of the im-
pacts on fraction of burned area, bias and root-mean-square
deviations when choosing different thresholds of probability
of burning is a first step towards conveying results of uncer-
tainty. Further steps in this direction will have to involve di-
rect contact with decision-makers when analyzing other large
fire events, namely the abovementioned ones that took place
in Portugal in June and October 2017.
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