Research article
10 Nov 2020
Research article | 10 Nov 2020
Uncertainty quantification of tsunami inundation in Kuroshio, Kochi Prefecture, Japan, using the Nankai–Tonankai megathrust rupture scenarios
Katsuichiro Goda et al.
Related authors
Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018,https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?
Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Edoardo Borgomeo, Katsuichiro Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson
Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018,https://doi.org/10.5194/nhess-18-2769-2018, 2018
Short summary
Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios
Ario Muhammad, Katsuichiro Goda, Nicholas A. Alexander, Widjo Kongko, and Abdul Muhari
Nat. Hazards Earth Syst. Sci., 17, 2245–2270, https://doi.org/10.5194/nhess-17-2245-2017,https://doi.org/10.5194/nhess-17-2245-2017, 2017
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 2: Different natural hazard areas
K. J. Beven, S. Almeida, W. P. Aspinall, P. D. Bates, S. Blazkova, E. Borgomeo, K. Goda, J. C. Phillips, M. Simpson, P. J. Smith, D. B. Stephenson, T. Wagener, M. Watson, and K. L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-295,https://doi.org/10.5194/nhess-2015-295, 2016
Preprint withdrawn
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of the issues
K. J. Beven, W. P. Aspinall, P. D. Bates, E. Borgomeo, K. Goda, J. W. Hall, T. Page, J. C. Phillips, J. T. Rougier, M. Simpson, D. B. Stephenson, P. J. Smith, T. Wagener, and M. Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-7333-2015,https://doi.org/10.5194/nhessd-3-7333-2015, 2015
Preprint withdrawn
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas
Keith J. Beven, Susana Almeida, Willy P. Aspinall, Paul D. Bates, Sarka Blazkova, Edoardo Borgomeo, Jim Freer, Katsuichiro Goda, Jim W. Hall, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, David B. Stephenson, Thorsten Wagener, Matt Watson, and Kate L. Wilkins
Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018,https://doi.org/10.5194/nhess-18-2741-2018, 2018
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 2: What should constitute good practice?
Keith J. Beven, Willy P. Aspinall, Paul D. Bates, Edoardo Borgomeo, Katsuichiro Goda, Jim W. Hall, Trevor Page, Jeremy C. Phillips, Michael Simpson, Paul J. Smith, Thorsten Wagener, and Matt Watson
Nat. Hazards Earth Syst. Sci., 18, 2769–2783, https://doi.org/10.5194/nhess-18-2769-2018,https://doi.org/10.5194/nhess-18-2769-2018, 2018
Short summary
Tsunami evacuation plans for future megathrust earthquakes in Padang, Indonesia, considering stochastic earthquake scenarios
Ario Muhammad, Katsuichiro Goda, Nicholas A. Alexander, Widjo Kongko, and Abdul Muhari
Nat. Hazards Earth Syst. Sci., 17, 2245–2270, https://doi.org/10.5194/nhess-17-2245-2017,https://doi.org/10.5194/nhess-17-2245-2017, 2017
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 2: Different natural hazard areas
K. J. Beven, S. Almeida, W. P. Aspinall, P. D. Bates, S. Blazkova, E. Borgomeo, K. Goda, J. C. Phillips, M. Simpson, P. J. Smith, D. B. Stephenson, T. Wagener, M. Watson, and K. L. Wilkins
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2015-295,https://doi.org/10.5194/nhess-2015-295, 2016
Preprint withdrawn
Short summary
Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of the issues
K. J. Beven, W. P. Aspinall, P. D. Bates, E. Borgomeo, K. Goda, J. W. Hall, T. Page, J. C. Phillips, J. T. Rougier, M. Simpson, D. B. Stephenson, P. J. Smith, T. Wagener, and M. Watson
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-7333-2015,https://doi.org/10.5194/nhessd-3-7333-2015, 2015
Preprint withdrawn
Short summary
Related subject area
La Palma landslide tsunami: calibrated wave source and assessment of impact on French territories
Stéphane Abadie, Alexandre Paris, Riadh Ata, Sylvestre Le Roy, Gael Arnaud, Adrien Poupardin, Lucie Clous, Philippe Heinrich, Jeffrey Harris, Rodrigo Pedreros, and Yann Krien
Nat. Hazards Earth Syst. Sci., 20, 3019–3038, https://doi.org/10.5194/nhess-20-3019-2020,https://doi.org/10.5194/nhess-20-3019-2020, 2020
Short summary
Investigating beach erosion related with tsunami sediment transport at Phra Thong Island, Thailand, caused by the 2004 Indian Ocean tsunami
Ryota Masaya, Anawat Suppasri, Kei Yamashita, Fumihiko Imamura, Chris Gouramanis, and Natt Leelawat
Nat. Hazards Earth Syst. Sci., 20, 2823–2841, https://doi.org/10.5194/nhess-20-2823-2020,https://doi.org/10.5194/nhess-20-2823-2020, 2020
Short summary
Simulation of storm surge inundation under different typhoon intensity scenarios: case study of Pingyang County, China
Xianwu Shi, Pubing Yu, Zhixing Guo, Zhilin Sun, Fuyuan Chen, Xiuguang Wu, Wenlong Cheng, and Jian Zeng
Nat. Hazards Earth Syst. Sci., 20, 2777–2790, https://doi.org/10.5194/nhess-20-2777-2020,https://doi.org/10.5194/nhess-20-2777-2020, 2020
Short summary
Quantifying processes contributing to marine hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea
Svetlana Jevrejeva, Lucy Bricheno, Jennifer Brown, David Byrne, Michela De Dominicis, Andy Matthews, Stefanie Rynders, Hindumathi Palanisamy, and Judith Wolf
Nat. Hazards Earth Syst. Sci., 20, 2609–2626, https://doi.org/10.5194/nhess-20-2609-2020,https://doi.org/10.5194/nhess-20-2609-2020, 2020
Short summary
Meteotsunami occurrence in the Gulf of Finland over the past century
Havu Pellikka, Terhi K. Laurila, Hanna Boman, Anu Karjalainen, Jan-Victor Björkqvist, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 20, 2535–2546, https://doi.org/10.5194/nhess-20-2535-2020,https://doi.org/10.5194/nhess-20-2535-2020, 2020
Short summary
Uncertainties in coastal flood risk assessments in small island developing states
Matteo U. Parodi, Alessio Giardino, Ap van Dongeren, Stuart G. Pearson, Jeremy D. Bricker, and Ad J. H. M. Reniers
Nat. Hazards Earth Syst. Sci., 20, 2397–2414, https://doi.org/10.5194/nhess-20-2397-2020,https://doi.org/10.5194/nhess-20-2397-2020, 2020
Short summary
Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami
Adrien Poupardin, Eric Calais, Philippe Heinrich, Hélène Hébert, Mathieu Rodriguez, Sylvie Leroy, Hideo Aochi, and Roby Douilly
Nat. Hazards Earth Syst. Sci., 20, 2055–2065, https://doi.org/10.5194/nhess-20-2055-2020,https://doi.org/10.5194/nhess-20-2055-2020, 2020
Short summary
Risk assessment of sea ice disasters on fixed jacket platforms in Liaodong Bay
Ning Xu, Shuai Yuan, Xueqin Liu, Yuxian Ma, Wenqi Shi, and Dayong Zhang
Nat. Hazards Earth Syst. Sci., 20, 1107–1121, https://doi.org/10.5194/nhess-20-1107-2020,https://doi.org/10.5194/nhess-20-1107-2020, 2020
Short summary
Run-up, inundation, and sediment characteristics of the 22 December 2018 Sunda Strait tsunami, Indonesia
Wahyu Widiyanto, Shih-Chun Hsiao, Wei-Bo Chen, Purwanto B. Santoso, Rudy T. Imananta, and Wei-Cheng Lian
Nat. Hazards Earth Syst. Sci., 20, 933–946, https://doi.org/10.5194/nhess-20-933-2020,https://doi.org/10.5194/nhess-20-933-2020, 2020
Short summary
The 22 December 2018 Mount Anak Krakatau volcanogenic tsunami on Sunda Strait coasts, Indonesia: tsunami and damage characteristics
Syamsidik, Benazir, Mumtaz Luthfi, Anawat Suppasri, and Louise K. Comfort
Nat. Hazards Earth Syst. Sci., 20, 549–565, https://doi.org/10.5194/nhess-20-549-2020,https://doi.org/10.5194/nhess-20-549-2020, 2020
Short summary
Integrated sea storm management strategy: the 29 October 2018 event in the Adriatic Sea
Christian Ferrarin, Andrea Valentini, Martin Vodopivec, Dijana Klaric, Giovanni Massaro, Marco Bajo, Francesca De Pascalis, Amedeo Fadini, Michol Ghezzo, Stefano Menegon, Lidia Bressan, Silvia Unguendoli, Anja Fettich, Jure Jerman, Matjaz̆ Ličer, Lidija Fustar, Alvise Papa, and Enrico Carraro
Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020,https://doi.org/10.5194/nhess-20-73-2020, 2020
Short summary
Tsunami hazard and risk assessment for multiple buildings by considering the spatial correlation of wave height using copulas
Yo Fukutani, Shuji Moriguchi, Kenjiro Terada, Takuma Kotani, Yu Otake, and Toshikazu Kitano
Nat. Hazards Earth Syst. Sci., 19, 2619–2634, https://doi.org/10.5194/nhess-19-2619-2019,https://doi.org/10.5194/nhess-19-2619-2019, 2019
Short summary
Comparing the efficiency of hypoxia mitigation strategies in an urban, turbid tidal river via a coupled hydro-sedimentary–biogeochemical model
Katixa Lajaunie-Salla, Aldo Sottolichio, Sabine Schmidt, Xavier Litrico, Guillaume Binet, and Gwenaël Abril
Nat. Hazards Earth Syst. Sci., 19, 2551–2564, https://doi.org/10.5194/nhess-19-2551-2019,https://doi.org/10.5194/nhess-19-2551-2019, 2019
Environmental controls on surf zone injuries on high-energy beaches
Bruno Castelle, Tim Scott, Rob Brander, Jak McCarroll, Arthur Robinet, Eric Tellier, Elias de Korte, Bruno Simonnet, and Louis-Rachid Salmi
Nat. Hazards Earth Syst. Sci., 19, 2183–2205, https://doi.org/10.5194/nhess-19-2183-2019,https://doi.org/10.5194/nhess-19-2183-2019, 2019
Short summary
Impact of hurricanes Irma and Maria on the Pacific Tsunami Warning Center initial tsunami warning capability for the Caribbean region
Victor Sardina, David Walsh, Kanoa Koyanagi, Stuart Weinstein, Nathan Becker, Charles McCreery, and Christa von Hillebrandt-Andrade
Nat. Hazards Earth Syst. Sci., 19, 1865–1880, https://doi.org/10.5194/nhess-19-1865-2019,https://doi.org/10.5194/nhess-19-1865-2019, 2019
Short summary
Assessment of the 1783 Scilla landslide–tsunami's effects on the Calabrian and Sicilian coasts through numerical modeling
Filippo Zaniboni, Gianluca Pagnoni, Glauco Gallotti, Maria Ausilia Paparo, Alberto Armigliato, and Stefano Tinti
Nat. Hazards Earth Syst. Sci., 19, 1585–1600, https://doi.org/10.5194/nhess-19-1585-2019,https://doi.org/10.5194/nhess-19-1585-2019, 2019
Short summary
Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis
Athanasios T. Vafeidis, Mark Schuerch, Claudia Wolff, Tom Spencer, Jan L. Merkens, Jochen Hinkel, Daniel Lincke, Sally Brown, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 19, 973–984, https://doi.org/10.5194/nhess-19-973-2019,https://doi.org/10.5194/nhess-19-973-2019, 2019
Short summary
Cited articles
Ando, M.: Source mechanisms and tectonic significance of historical
earthquakes along the Nankai Trough, Japan, Tectonophysics, 27, 119–140,
https://doi.org/10.1016/0040-1951(75)90102-X, 1975.
Baranes, H., Woodruff, J. D., Loveless, J. P., and Hyodo, M.: Interseismic
coupling-based earthquake and tsunami scenarios for the Nankai Trough, Geophys. Res. Lett., 45, 2986–2994, https://doi.org/10.1002/2018GL077329, 2018.
CDMC – Central Disaster Management Council: Working group report on mega-thrust earthquake models for the Nankai Trough, Japan, Cabinet Office of the Japanese Government, Tokyo, available at:
http://www.bousai.go.jp/jishin/nankai/taisaku/pdf/20120829_2nd_report01.pdf,
last access: December 2012.
Fujino, S., Kimura, H., Komatsubara, J., Matsumoto, D., Namegaya, Y., Sawai,
Y., and Shishikura, M.: Stratigraphic evidence of historical and prehistoric
tsunamis on the Pacific coast of central Japan: Implications for the variable recurrence of tsunamis in the Nankai Trough, Quaternary Sci. Rev., 201, 147–161, https://doi.org/10.1016/j.quascirev.2018.09.026, 2018.
Fujiwara, O., Aoshima, A., Irizuki, T., Ono, E.,Obrochta, S. P., Sampei, Y.,
Sato, Y., and Takahashi, A.: Tsunami deposits refine great earthquake rupture extent and recurrence over the past 1300 years along the Nankai and Tokai fault segments of the Nankai Trough, Japan, Quaternary Sci. Rev., 227, 105999, https://doi.org/10.1016/j.quascirev.2019.105999, 2020.
Fukutani, Y., Suppasri, A., and Imamura, F.: Stochastic analysis and uncertainty assessment of tsunami wave height using a random source
parameter model that targets a Tohoku-type earthquake fault, Stoch. Environ. Res. Risk A., 29, 1763–1779, https://doi.org/10.1007/s00477-014-0966-4, 2015.
Garrett, E., Fujiwara, O., Garrett, P., Heyvaert, V. M. A., Shishikura, M.,
Yokoyama, Y., Hubert-Ferrari, A., Brückner, H., Nakamura, A., De Batist,
M., and the QuakeRecNankai team: A systematic review of geological evidence
for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan,
Earth-Sci. Rev., 159, 337–357, https://doi.org/10.1016/j.earscirev.2016.06.011, 2016.
Goda, K., Yasuda, T., Mori, N., and Maruyama, T.: New scaling relationships
of earthquake source parameters for stochastic tsunami simulation, Coast. Eng. J., 58, 1650010, https://doi.org/10.1142/S0578563416500108, 2016.
Goda, K., Yasuda, T., Mai, P. M., Maruyama, T., and Mori, N.: Tsunami simulations of mega-thrust earthquakes in the Nankai–Tonankai Trough
(Japan) based on stochastic rupture scenarios, Tsunamis: Geology, Hazards
and Risks, edited by: Scourse, E. M., Chapman, D. R. Tappin, S. R. Wallis,
Geol. Soc. Lond. Spec. Publ., 456, 55–74, https://doi.org/10.1144/SP456.1, 2018.
Goda, K., Mori, N., and Yasuda, T.: Rapid tsunami loss estimation using
regional inundation hazard metrics derived from stochastic tsunami simulation, Int. J. Disast. Risk Reduct., 40, 101152, https://doi.org/10.1016/j.ijdrr.2019.101152, 2019.
Goto, C., Ogawa, Y., Shuto, N., and Imamura, F.: Numerical method of tsunami
simulation with the leap-frog scheme, in: IOC Manuals and Guides, 35. UNESCO,
Paris, France, 1997.
Hirose, F., Nakajima, J., and Hasegawa, A.: Three-dimensional seismic velocity structure and configuration of the Philippine Sea slab in southwestern Japan estimated by double-difference tomography, J. Geophys. Res.-Solid, 113, B09315, https://doi.org/10.1029/2007JB005274, 2008.
Honma, J.: Discharge coefficient for trapezoidal weir, J. Jpn. Soc. Civ. Eng., 26, 635–645, 1940.
Iinuma, T., Hino, R., Kido, M., Inazu, D., Osada, Y., Ito, Y., Ohzono, M.,
Tsushima, H., Suzuki, S., Fujimoto, H., and Miura, S.: Coseismic slip distribution of the 2011 off the Pacific Coast of Tohoku Earthquake (
M9.0)
refined by means of seafloor geodetic data, J. Geophys. Res.-Solid, 117, B07409, https://doi.org/10.1029/2012JB009186, 2012.
JSCE – Japan Society of Civil Engineers: Tsunami assessment method for
nuclear power plants in Japan, available at:
https://www.jsce.or.jp/committee/ceofnp/Tsunami/eng/JSCE_Tsunami_060519.pdf
(last access: December 2012), 2002.
Kimura, H., Tadokoro, K., and Ito, T.: Interplate coupling distribution along the Nankai Trough in southwest Japan estimated from the block motion model based on onshore GNSS and seafloor GNSS/A observations, J. Geophys. Res.-Solid, 124, 6140–6164, https://doi.org/10.1029/2018JB016159, 2019.
Kodaira, S., Hori, T., Ito, A., Miura, S., Fujie, G., Park, J. O., Baba, T.,
Sakaguchi, H., and Kaneda, Y.: A cause of rupture segmentation and synchronization in the Nankai trough revealed by seismic imaging and numerical simulation, J. Geophys. Res.-Solid, 111, B09301, https://doi.org/10.1029/2005JB004030, 2006.
Lotto, G. C., Jeppson, T. N., and Dunham, E. M.: Fully coupled simulations of
megathrust earthquakes and tsunamis in the Japan Trench, Nankai Trough, and
Cascadia subduction zone, Pure Appl. Geophys., 176, 4009–4041,
https://doi.org/10.1007/s00024-018-1990-y, 2019.
Loveless, J. P. and Meade, B. J.: Geodetic imaging of plate motions, slip rates, and partitioning of deformation in Japan, J. Geophys. Res.-Solid, 115, B02410, https://doi.org/10.1029/2008JB006248, 2010.
Madariaga, R. and Ruiz, S.: Earthquake dynamics on circular faults: a review 1970–2015, J. Seismol., 20, 1235–1252, https://doi.org/10.1007/s10950-016-9590-8, 2016.
Mai, P. M. and Beroza, G. C.: A spatial random field model to characterize
complexity in earthquake slip, J. Geophys. Res.-Solid, 107, 2308, https://doi.org/10.1029/2001JB000588, 2002.
Mai, P. M., Spudich, P., and Boatwright, J.: Hypocenter locations in finite-source rupture models, Bull. Seismol. Soc. Am., 95, 965–980, https://doi.org/10.1785/0120040111, 2005.
Melgar, D., Williamson, A. L., and Salazar-Monroy, E. F.: Differences between
heterogeneous and homogeneous slip in regional tsunami hazards modelling,
Geophys. J. Int., 219, 553–562, https://doi.org/10.1093/gji/ggz299, 2019.
Mueller, C., Power, W. L., Fraser, S., and Wang, X.: Effects of rupture complexity on local tsunami inundation: implications for probabilistic
tsunami hazard assessment by example, J. Geophys. Res.-Solid, 120, 488–502, https://doi.org/10.1002/2014JB011301, 2015.
Murotani, S., Satake, K., and Fujii, Y.: Scaling relations of seismic moment, rupture area, average slip, and asperity size for
M∼9 subduction-zone earthquakes, Geophys. Res. Lett., 40, 5070–5074, https://doi.org/10.1002/grl.50976, 2013.
Okada, Y.: Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135–1154, 1985.
Park, H., Cox, D. T., and Barbosa, A. R.: Comparison of inundation depth and
momentum flux based fragilities for probabilistic tsunami damage assessment
and uncertainty analysis, Coast. Eng., 122, 10–26, https://doi.org/10.1016/j.coastaleng.2017.01.008, 2017.
Satake, K., Fujii, Y., Harada, T., and Namegaya, Y.: Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred
from tsunami waveform data, Bull. Seismol. Soc. Am., 103, 1473–1492, https://doi.org/10.1785/0120120122, 2013.
Stein, S. and Okal, E. A.: The size of the 2011 Tohoku earthquake need not
have been a surprise, EOS Trans. Am. Geophys. Union, 92, 227–228, https://doi.org/10.1029/2011EO270005, 2011.
Tanigawa, K., Shishikura, M., Fujiwara, O., Namegaya, Y., and Matsumoto, D.:
Mid- to late-Holocene marine inundations inferred from coastal deposits facing the Nankai Trough in Nankoku, Kochi Prefecture, southern Japan, Holocene, 28, 867–878, https://doi.org/10.1177/0959683617752837, 2018.
Tanioka, Y. and Satake, K.: Tsunami generation by horizontal displacement
of ocean bottom, Geophys. Res. Lett., 23, 861–864, https://doi.org/10.1029/96GL00736, 1996.
Thingbaijam, K. K. S., Mai, P. M., and Goda, K.: New empirical earthquake-source scaling laws, Bull. Seismol. Soc. Am., 107, 2225–2246, https://doi.org/10.1785/0120170017, 2017.
Watanabe, S., Bock, Y., Melgar, D., and Tadokoro, K.: Tsunami scenarios
based on interseismic models along the Nankai trough, Japan, from seafloor
and onshore geodesy, J. Geophys. Res.-Solid., 123, 2448–2461, https://doi.org/10.1002/2017JB014799, 2018.
Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T., and Asada, A.: Seafloor
geodetic constraints on interplate coupling of the Nankai Trough megathrust
zone, Nature, 534, 374–377, https://doi.org/10.1038/nature17632, 2016.