Articles | Volume 20, issue 7
https://doi.org/10.5194/nhess-20-2055-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-2055-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep submarine landslide contribution to the 2010 Haiti earthquake tsunami
Adrien Poupardin
CORRESPONDING AUTHOR
Institut de Recherche en Constructibilité, ESTP, Université
Paris Est, Champ-sur-Marne, 77420, France
Ecole normale supérieure, Dept. of Geosciences, University PSL,
CNRS, Paris, 75005, France
Eric Calais
Ecole normale supérieure, Dept. of Geosciences, University PSL,
CNRS, Paris, 75005, France
Philippe Heinrich
Commissariat à l'Energie Atomique, DAM, DIF, Arpajon, 91290,
France
Hélène Hébert
Commissariat à l'Energie Atomique, DAM, DIF, Arpajon, 91290,
France
Mathieu Rodriguez
Ecole normale supérieure, Dept. of Geosciences, University PSL,
CNRS, Paris, 75005, France
Sylvie Leroy
Université Pierre et Marie Curie, Sorbonne Universités, CNRS, ISTeP, Paris, 75005, France
Hideo Aochi
Ecole normale supérieure, Dept. of Geosciences, University PSL,
CNRS, Paris, 75005, France
Bureau de Recherches Géologiques et Minières, Orléans,
45000, France
Roby Douilly
Department of Earth Sciences, University of California, Riverside, 231, USA
Related authors
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
Nat. Hazards Earth Syst. Sci., 23, 3111–3124, https://doi.org/10.5194/nhess-23-3111-2023, https://doi.org/10.5194/nhess-23-3111-2023, 2023
Short summary
Short summary
We developed a system able to to predict, knowing the appropriate characteristics of the flood defense structure and sea state, the return periods of potentially dangerous events as well as a ranking of parameters by order of uncertainty.
The model is a combination of statistical and empirical methods that have been applied to a Mediterranean earthen dike. This shows that the most important characteristics of the dyke are its geometrical features, such as its height and slope angles.
Stéphane Abadie, Alexandre Paris, Riadh Ata, Sylvestre Le Roy, Gael Arnaud, Adrien Poupardin, Lucie Clous, Philippe Heinrich, Jeffrey Harris, Rodrigo Pedreros, and Yann Krien
Nat. Hazards Earth Syst. Sci., 20, 3019–3038, https://doi.org/10.5194/nhess-20-3019-2020, https://doi.org/10.5194/nhess-20-3019-2020, 2020
Short summary
Short summary
The tsunami which could be generated by a potential flank collapse of the Cumbre Vieja volcano in La Palma, Canary Islands, is evaluated through a numerical simulation based on an advanced and finely calibrated model. Then the consequences of such an event for Europe, France and Guadeloupe island are investigated using different numerical models for propagation. The impacts vary from negligible to very significant depending on the location considered.
Hideo Aochi, Masumi Yamada, Tung-Cheng Ho, Gonéri Le Cozannet, Arno Christian Hammann, and Ruth Mottram
EGUsphere, https://doi.org/10.5194/egusphere-2025-3803, https://doi.org/10.5194/egusphere-2025-3803, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The 2017 Landslide-made tsunami in Greenland occurred in a context of global warming and heavily impacted local communities. We analyze this event using seismic data to reconstruct the whole chain of processes from the landslide to the tsunami. Our results validate a new approach to analyze crustal deformations caused by tsunami propagation in fjords, suggesting that alert systems based on seismic data are feasible, potentially allowing to reduce tsunami risks in polar regions.
Jean H. M. Roger, Yannice Faugère, Hélène Hébert, Antoine Delepoulle, and Gérald Dibarboure
EGUsphere, https://doi.org/10.5194/egusphere-2025-3926, https://doi.org/10.5194/egusphere-2025-3926, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Deployed in 2022, SWOT satellite was flying over the southwest Pacific region on 19 May 2023 when it recorded the tsunami triggered by a Mw 7.7 earthquake in the Vanuatu Subduction Zone. For the first time ever it provided a 2D image of a tsunami wavefield on a straight SSW-NNE path. Further compared with tsunami numerical simulation outputs, the modelled wavefield and SWOT record show an overall good phase agreement, but simulated amplitudes and energy spectra are lower than the measurements.
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
Nat. Hazards Earth Syst. Sci., 23, 3111–3124, https://doi.org/10.5194/nhess-23-3111-2023, https://doi.org/10.5194/nhess-23-3111-2023, 2023
Short summary
Short summary
We developed a system able to to predict, knowing the appropriate characteristics of the flood defense structure and sea state, the return periods of potentially dangerous events as well as a ranking of parameters by order of uncertainty.
The model is a combination of statistical and empirical methods that have been applied to a Mediterranean earthen dike. This shows that the most important characteristics of the dyke are its geometrical features, such as its height and slope angles.
Stéphane Abadie, Alexandre Paris, Riadh Ata, Sylvestre Le Roy, Gael Arnaud, Adrien Poupardin, Lucie Clous, Philippe Heinrich, Jeffrey Harris, Rodrigo Pedreros, and Yann Krien
Nat. Hazards Earth Syst. Sci., 20, 3019–3038, https://doi.org/10.5194/nhess-20-3019-2020, https://doi.org/10.5194/nhess-20-3019-2020, 2020
Short summary
Short summary
The tsunami which could be generated by a potential flank collapse of the Cumbre Vieja volcano in La Palma, Canary Islands, is evaluated through a numerical simulation based on an advanced and finely calibrated model. Then the consequences of such an event for Europe, France and Guadeloupe island are investigated using different numerical models for propagation. The impacts vary from negligible to very significant depending on the location considered.
Cited articles
Abrahamson, N. and Silva, W.: Summary of the Abrahamson & Silva NGA Ground
motion relations, Earthq. Spectra, 24, 67–97, 2008.
Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P., Savoye, B., and Bourillet,
J. F.: Numerical modelling of a landslide-generated tsunami: the 1979 Nice
event, Pure Appl. Geophys., 157, 1707–1727, 2000.
Boore, D. M.: NGA08_GM_TMR, Next generation
attenuation ground motions for specified period (T), magnitude, and distance
(R) code, revised version, available at: http://www.daveboore.com (last access: May 2020), 2012.
Boore, D. M. and Atkinson, G. M.: Ground-motion prediction equations for the
averaged horizontal component of PGA, PGV, and 5 %-damped PSA at spectral
periods between 0.01 s and 10.0 s, Earthq. Spectra, 24, 99–138, 2008.
Calais, E., Freed, A., Mattioli, G., Amelung, F., Jonsson, S., Jansma, P.,
Hong, S. H., Dixon, T., Prepetit, C., and Momplaisir, R.: Transpressional
rupture of an unmapped fault during the 2010 Haiti earthquake, Nat.
Geosci., 3, 794–799, 2010.
Campbell, K. W. and Bozorgnia, Y.: NGA Ground motion model for the geometric
mean horizontal component of PGA, PGV, PGD and 5 % damped linear elastic
response spectra for periods ranging from 0.01 to 10 s, Earthq. Spectra, 24,
139–171, 2008.
Chiou, B. S.-J. and Youngs, R. R.: An NGA model for the average horizontal
component of peak ground motion and response spectra, Earthq. Spectra, 24,
173–215, 2008.
Dietz, L. D. and Ellsworth, W. L.: The October 17, 1989, Loma Prieta,
California, Earthquake and its aftershocks: Geometry of the sequence from
high-resolution locations, Geophys. Res. Lett., 17, 1417–1420, 1990.
Douilly, R., Aochi, H., Calais, E., and Freed, A.: Three-dimensional dynamic
rupture simulations across interacting faults: The Mw 7.0, 2010, Haiti
earthquake, J. Geophys. Res.-Sol. Ea. 120, 1108–1128, 2015.
Douilly, R., Mavroeidis, G. P., and Calais, E.: Simulation of broadband
strong ground motion for a hypothetical Mw 7.1 earthquake on the
Enriquillo Fault in Haiti, Geophys. J. Int., 211, 400–417, 2017.
Fan, W. and Shearer, P. M.: Local near instantaneously dynamically triggered
aftershocks of large earthquakes, Science, 353, 1133–1136, 2016.
Fritz, H. M., Kongko, W., Moore, A., Macadoo, B. G., Goff, J., Harbitz, C.,
Uslu, B., Kalligeris, N., Suteja, D., Kalsum, K., Titov, V., Gusman, A.,
Latief, H., Santoso, E., Sujoko, S., Djulkarnaen, D., Sunendar, H., and
Synolakis, C.: Extreme runup from the 17 July 2006 Java tsunami, Geophys.
Res. Letter, 34, L12602, https://doi.org/10.1029/2007GL029404, 2007.
Fritz, H. M., Hillaire, J. V., Molière, E., Wei, Y., and Mohammed, F.:
Twin tsunamis triggered by the 12 January 2010 Haiti earthquake, Pure Appl.
Geophys., 170, 1463–1474, 2013.
Frucht, E., Salamon, A., Gal, E., Ginat, H., Grigorovitch, M., Shem Tov, R., and
Ward, S.: A Fresh View of the Tsunami Generated by the Dead Sea Transform,
1995 Mw 7.2 Nuweiba Earthquake, along the Gulf of Elat–Aqaba, Seismol.
Res. Lett., 90, 1483–1493, 2019.
Gailler, A., Calais, E., Hébert, H., Roy, C., and Okal, E.: Tsunami
scenarios and hazard assessment along the northern coast of Haiti,
Geophys. J. Int., 203, 2287–2302, 2015.
Goodno, B., Gould, N., Caldwell, P., and Gould, P.: Effects of the January
2010 Haitian earthquake on selected electrical equipment, Earthq.
Spectra, 27, S251–S276, 2011.
Gutenberg, B.: Tsunamis and earthquakes, B. Seismol. Soc. Am., 29,
517–526, 1939.
Hampton, M. A., Locat, J., and Lee, H. J.: Submarine landslides, Rev.
Geophys., 34, 33–59, 1996.
Hashimoto, M., Fukushima Y., and Fukahata, Y.: Fan-delta uplift and mountain
subsidence during the Haiti 2010 earthquake, Nat. Geosci., 4, 1–5,
2011.
Hayes, G. P., Briggs, R. W., Sladen, A., Fielding, E. J., Prentice, C.,
Hudnut, K., Mann, P., Taylor, F. W., Crone, A. J., Gold, R., Ito, T., and
Simons M.: Complex rupture during the 12 January 2010 Haiti earthquake,
Nat. Geosci., 3, 800–805, 2010.
Hébert, H., Heinrich, P., Schindelé, F., and Piatanesi, A.:
Far-field simulation of tsunami propagation in the Pacific Ocean: impact on
the Marquesas Islands (French Polynesia), J. Geophys. Res., 106,
9161–9177, 2001.
Hébert, H., Burg, P. E., Binet, R., Lavigne, F., Allgeyer, S., and
Schindelé, F.: The 2006 July 17 Java (Indonesia) tsunami from satellite
imagery and numerical modelling: a single or complex source?, Geophys. J.
Int., 191, 1255–1271, 2012.
Heinrich, P., Piatanesi, A., and Hébert, H.: Numerical modeling of tsunami
generation and propagation from submarine slumps: the 1998 Papua New Guinea
event, Geophys. J. Int., 145, 97–111, 2001.
Hoffmann, G., Al-Yahyai, S., Naeem, G., Kociok, M., and Grützner, C.: An
Indian Ocean tsunami triggered remotely by an onshore earthquake in
Balochistan, Pakistan, Geology, 42, 883–886, 2014.
Hornbach, M. J., Braudy, N., Briggs, R. W., Cormier, M.-H., Davis, M. B.,
Diebold, J. B., Dieudonne, N., Douilly, R., Frohlich, C., Gulick, S. P. S.,
Johnson, H. E., Mann, P., McHugh, C., Ryan-Mishkin, K., Prentice, C. S.,
Seeber, L., Sorlien, C. C., Steckler, M. S., Symithe, S. J., Taylor, F. W.,
and Templeton, J.: High tsunami frequency as a result of combined
strike-slip faulting and coastal landslides, Nat. Geosci., 3, 783–788,
2010.
Hough, S. E., Taniguchi, T., and Altidor, J. R.: Estimation of peak ground
acceleration from horizontal rigid body displacement: A case study in
Port-au-Prince, Haiti, B. Seismol. Soc. Am., 102, 2704–2713, 2012.
Imamura, F., Gica, E., Takahashi, T., and Shuto, N.: Numerical Simulation of the
1992 Flores Tsunami: Interpretation of Tsunami Phenomena in Northeastern
Flores Island and Damage at Babi Island, Pure Appl. Geophys., 144,
555–568, 1995.
Janin, A., Rodriguez, M., Sakellariou, D., Lykousis, V., and Gorini, C.: Tsunamigenic potential of a Holocene submarine landslide along the North Anatolian Fault (northern Aegean Sea, off Thasos island): insights from numerical modelling , Nat. Hazards Earth Syst. Sci., 19, 121–136, https://doi.org/10.5194/nhess-19-121-2019, 2019.
Kanamori, H.: Mechanism of tsunami earthquakes, Phys. Earth Planet. In., 6, 346–359, 1972.
Keefer, D. K.: Landslides caused by earthquakes, Geol. Soc.
Am. Bull., 95, 406–421, 1984.
Leroy, S.: HAITI-SIS cruise, RV L'Atalante, French Oceanographic Cruises, https://doi.org/10.17600/12010070, 2012.
Leroy, S., Ellouz-Zimmermann, N., Corbeau, J., Rolandone, F., de
Lépinay, B. M., Meyer, B., Momplaisir, R., Granja Bruña, J. L.,
Battani, A., Baurion, C., Burov, E., Clouard, V., Deschamps, R., Gorini, C.,
Hamon, Y., Lafosse, M., Leonel, J., Le Pourhiet, L., Llanes Estrada, P.,
Loget, N., Lucazeau, F., Pillot, D., Poort, J., Tankoo, K. R., Cuevas, J. L.,
Alcaide, J. F., Jean Poix, C., Muñoz-Martin, A., Mitton, S., Rodriguez,
Y., Schmitz, J., Seeber, L., Carbo- Gorosabel, A., and Muñoz, S.:
Segmentation and kinematics of the North America-Caribbean plate boundary
offshore Hispaniola, Terra Nova, 27, 467–478, 2015.
López-Venegas, A. M., ten Brink, U. S., and Geist, E. L.: Submarine
landslide as the source for the October 11, 1918 Mona Passage tsunami:
Observations and modeling, Mar. Geol., 254, 35–46, 2008.
Løvholt F., Pedersen, G., Harbitz, C. B., Glimsdal, S., and Kim, J.: On the
characteristics of landslide tsunamis, Philos. T. Roy. Soc. A, 373,
20140376, https://doi.org/10.1098/rsta.2014.0376, 2015.
Ma, K. F., Satake, K., and Kanamori, H.: The origin of the tsunami excited
by the 1989 Loma Prieta earthquake faulting or slumping?, Geophys. Res.
Lett., 18, 637–640, 1991.
Mauffret, A. and Leroy, S.: Neogene intraplate deformation of the Caribbean
plate at the Beata Ridge, Sedimentary Basins of the World, 4, 627–669,
1999.
Mavroeidis, G. P. and Scotti, C. M.: Finite-Fault Simulation of Broadband
Strong Ground Motion from the 2010 Mw 7.0 Haiti Earthquake, B.
Seismol. Soc. Am., 103, 2557–2576, 2013.
Meng, L., Ampuero, J. P., Sladen, A., and Rendon, H.: High-resolution
backprojection at regional distance: Application to the Haiti M7.0
earthquake and comparisons with finite source studies, J. Geophys. Res.,
117, B04313, https://doi.org/10.1029/2011JB008702, 2012.
de Lépinay, B. M., Deschamps, A., Klingelhoefer, F., Mazabraud, Y.,
Delouis, B., Clouard, V., Hello, Y., Crozon, J., Marcaillou, B., Graindorge,
D., Vallée, M, Perrot, J., Bouin, M.-P., Saurel, J.-M., Charvis, P., and
St-Louis, M.: The 2010 Haiti earthquake: A complex fault pattern constrained
by seismologic and tectonic observations, Geophys. Res. Lett., 38, L22305, https://doi.org/10.1029/2011GL049799,
2011.
Meunier, P., Hovius, N., and Haines, A. J.: Regional patterns of
earthquake-triggered landslides and their relation to ground motion,
Geophys. Res. Lett., 34, L20408, https://doi.org/10.1029/2007GL031337, 2007.
Murphy, J. R. and O'Brien, L. J.: The correlation of peak ground acceleration
amplitude with seismic intensity and other physical parameters, B. Seismol.
Soc. Am., 67, 877–915, 1977.
Newman, A. V., Hayes, G., Wei, Y., and Convers, J.: The 25 October 2010
Mentawai tsunami earthquake from real-time discriminants, finite-fault
rupture, and tsunami excitation, Geophys. Res. Lett., 38, L05302, https://doi.org/10.1029/2010GL046498, 2011.
Okada, Y.: Internal deformation due to shear and tensile faults in a
half-space, B. Seismol. Soc. Am., 82,
1018–1040, 1992.
Okal, E. A. and Synolakis, C. E.: Comment on “Origin of the 17 July 1998
Papua New Guinea Tsunami: earthquake or landslide?”, Seismol.
Res. Lett., 72, 362–266, 2001.
Okal, E. A. and Synolakis, C. E.: Source discriminants for near-field
tsunamis, Geophys. J. Int., 158, 899–912, 2004.
Okal, E. A., Synolakis, C. E., Uslu, B., Kalligeris, N., and Voukouvalas,
E.: The 1956 earthquake and tsunami in Amorgos, Greece. Geophys. J. Int., 178, 1533–1554, 2009.
O'Loughlin, K. F. and Lander, J. F.: Caribbean Tsunamis: A 500-Year History
from 1498–1998, v.20, Springer, the Netherlands, 2003.
Olson, S. M., Green, R. A., Lasley, S., Martin, N., Cox, B. R., Rathje, E.,
Bachhuber, J., and French, J.: Documenting liquefaction and lateral
spreading triggered by the 12 January 2010 Haiti earthquake, Earthq.
Spectra, 27, S93–S116, 2011.
Papageorgiou, A. S. and Aki, K.: A specific barrier model for the quantitative
description of inhomogeneous faulting and the prediction of strong ground
motion. Part I. Description of the model, B. Seismol. Soc. Am., 73,
693–722, 1983.
Parolai, S., Bormann, P., and Milkereit, C.: New Relationships between Vs,
Thickness of Sediments, and Resonance Frequency Calculated by the H∕V Ratio
of Seismic Noise for the Cologne Area (Germany), B.
Seismol. Soc. Am., 92, 2521–2527, 2002.
Pope, E. L., Talling, P. J., and Carter L.: Which earthquakes trigger
damaging submarine mass movements: Insights from a global record of
submarine cable breaks?, Mar. Geol., 384, 131–146, 2017.
Poupardin, A., Heinrich, P., Frère, A., Imbert, D., Hébert, H., and
Flouzat, M.: The 1979 Submarine Landslide-Generated Tsunami in Mururoa,
French Polynesia, Pure Appl. Geophys., 174, 3293–3311, 2017.
Poupardin, A., Heinrich, P. Hébert, H., Schindelé, F., Jamelot, A.,
Reymond, D., and Sugioka, H.: Traveltime delay relative to the maximum energy of the wave train for dispersive tsunamis propagating across the Pacific Ocean: the case of 2010 and 2015 Chilean Tsunamis, Geophys. J. Int., 214, 1538–1555, 2018.
Rodriguez, M., Maleuvre, C., Jollivet-Castelot, M., d'Acremont, E., Rabaute,
A., Lafosse, M., Ercilla, G., Vázquez, J. T., Alonso, B., Ammar, A., and
Gorini, C.: Tsunamigenic submarine landslides along the Xauen-Tofiño
banks in the Alboran Sea (Western Mediterranean Sea), Geophys. J. Int., 209, 266–281, 2017.
Saint Fleur, N., Feuillet, N., Grandin, R., Jacques, E., Weil-Accardo, J.,
and Klinger, Y.: Seismotectonics of southern Haiti: A new faulting model for
the 12 January 2010 M7.0 earthquake, Geophys. Res. Lett, 42, 10273–10281,
2015.
Salamon, A. and DiManna, P.: Empirical constraint son magnitude-distance
relationships for seismically induced submarine tsunamigenic landslides,
Earth-Sci. Rev., 191, 66–92, 2019.
Scherer, J.: Great earthquakes in the island of Haiti, B. Seismol. Soc.
Am., 2, 161–180, 1912.
Symithe, S. J., Calais, E., Haase, J. S., Freed, A. M., and Douilly, R.:
Coseismic Slip Distribution of the 2010 M7.0 Haiti Earthquake and Resulting
Stress Changes on Regional Faults, B. Seismol. Soc. Am., 103,
2326–2343, 2013.
Symithe, S. J., Calais, E., Chabalier, J. B., Robertson, R., and Higgins M.:
Current block motions and strain accumulation on active faults in the
Caribbean, J. Geophys. Res., 120, 3748–3774, https://doi.org/10.1002/2014JB011779, 2015.
Synolakis, C. E., Bardet, J.- P., Borrero, J. C., Davies, H. L., Okal, E.
A., Silver, E. A., Sweet, S., and Tappin, D. R.: The slump origin of the
1998 Papua New Guinea tsunami, P. Roy. Soc. Lond. A, 458, 763–789,
2002.
Tanyaş, H., Cees, J., van Westen, K. E., Allstadt, M. A., Nowicki, J.,
Tolga, G., Randall, W. J., Jonathan, W. G., Hiroshi, P. S., Robert, G. S.,
Odin, M., and Niels, H.: Presentation and Analysis of a Worldwide Database of
Earthquake-Induced Landslide Inventories, J. Geophys. Res.-Earth, 122, 1991–2015, https://doi.org/10.1002/2017JF004236, 2017.
Tappin, D. R., Watts, P., and Grilli, S. T.: The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event, Nat. Hazards Earth Syst. Sci., 8, 243–266, https://doi.org/10.5194/nhess-8-243-2008, 2008.
ten Brink, U. S., Geist, E. L., and Andrews, B. D.: Size distribution of
submarine landslides and its implication to tsunami hazard in Puerto Rico,
Geophys. Res. Lett., 33, L11307, https://doi.org/10.1029/2006GL026125, 2006.
ten Brink, U. S., Andrews, B. D., and Miller, N. C.: Seismicity and
sedimentation rate effects on submarine slope stability, Geology, 44,
563–566, 2016.
ten Brink, U. S., Wei, Y., Fan, W., Granja Bruña, J.-L., and Miller, N.:
Mysterious tsunami in the Caribbean Sea following the 2010 Haiti earthquake
possibly generated by dynamically triggered early aftershocks, Earth
Planet. Sc. Lett., 540, 116269, https://doi.org/10.1016/j.epsl.2020.116269, 2020.
Verbeek, R. D. M.: Kort verslag over de aarden zeebeving op Ceram, den
30sten September 1899, Natuurkundig Tijdschrift voor Nederlandsch-Indie, 60,
219–228, 1900.
Viesca, R. C. and Rice, J. R.: Nucleation of slip-weakening rupture
instability in landslides by localized increase of pore pressure, J.
Geophys. Res., 117, 255–21, 2012.
Yalçıner, A. C., Alpar, B., Altınok, Y., Özbay, I., and Imamura,
F.: Tsunamis in the Sea of Marmara: Historical documents for the past,
models for the future, Mar. Geol., 15, 445–463, 2002.
Short summary
The Mw 7 Haiti earthquake in 2010 was accompanied by local tsunamis that caused fatalities and damage to coastal infrastructure. Earthquakes alone could not explain all observations in Hispaniola Island. We suspected that a big submarine landslide occured and generated the 3 m high waves observed near Jacmel and Pedernales. We identify a landslide scar 30 km from the epicenter and at a depth of 3500 m and we simulate the corresponding tsunami which gives results very close to observations.
The Mw 7 Haiti earthquake in 2010 was accompanied by local tsunamis that caused fatalities and...
Altmetrics
Final-revised paper
Preprint