Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
Download
Short summary
In 1958, at Lituya Bay in Alaska, the largest tsunami wave ever recorded took place. Since then, its numerical simulation has been a challenge and no numerical model has been able to reproduce, in the real geometry of the bay, the more than 200 m wave and the extreme run-up (climbing of the water up on land) of 524 m. The aim of our research, in the framework of a collaboration between the University of Malága (Spain) and NOAA (US), was to fulfil this gap at the same time as verifying our model.
Altmetrics
Final-revised paper
Preprint
NHESS | Articles | Volume 19, issue 2
Nat. Hazards Earth Syst. Sci., 19, 369–388, 2019
https://doi.org/10.5194/nhess-19-369-2019
Nat. Hazards Earth Syst. Sci., 19, 369–388, 2019
https://doi.org/10.5194/nhess-19-369-2019

Research article 15 Feb 2019

Research article | 15 Feb 2019

The Lituya Bay landslide-generated mega-tsunami – numerical simulation and sensitivity analysis

José Manuel González-Vida et al.

Related authors

Fast evaluation of tsunami scenarios: uncertainty assessment for a Mediterranean Sea database
Irene Molinari, Roberto Tonini, Stefano Lorito, Alessio Piatanesi, Fabrizio Romano, Daniele Melini, Andreas Hoechner, José M. Gonzàlez Vida, Jorge Maciás, Manuel J. Castro, and Marc de la Asunción
Nat. Hazards Earth Syst. Sci., 16, 2593–2602, https://doi.org/10.5194/nhess-16-2593-2016,https://doi.org/10.5194/nhess-16-2593-2016, 2016
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Beachgoers' ability to identify rip currents at a beach in situ
Sebastian J. Pitman, Katie Thompson, Deirdre E. Hart, Kevin Moran, Shari L. Gallop, Robert W. Brander, and Adam Wooler
Nat. Hazards Earth Syst. Sci., 21, 115–128, https://doi.org/10.5194/nhess-21-115-2021,https://doi.org/10.5194/nhess-21-115-2021, 2021
Short summary
Wave height return periods from combined measurement–model data: a Baltic Sea case study
Jan-Victor Björkqvist, Sander Rikka, Victor Alari, Aarne Männik, Laura Tuomi, and Heidi Pettersson
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, https://doi.org/10.5194/nhess-20-3593-2020,https://doi.org/10.5194/nhess-20-3593-2020, 2020
Short summary
Modeling dependence and coincidence of storm surges and high tide: methodology, discussion and recommendations based on a simplified case study in Le Havre (France)
Amine Ben Daoued, Yasser Hamdi, Nassima Mouhous-Voyneau, and Philippe Sergent
Nat. Hazards Earth Syst. Sci., 20, 3387–3398, https://doi.org/10.5194/nhess-20-3387-2020,https://doi.org/10.5194/nhess-20-3387-2020, 2020
Short summary
Laboratory study of non-linear wave–wave interactions of extreme focused waves in the nearshore zone
Iskander Abroug, Nizar Abcha, Armelle Jarno, and François Marin
Nat. Hazards Earth Syst. Sci., 20, 3279–3291, https://doi.org/10.5194/nhess-20-3279-2020,https://doi.org/10.5194/nhess-20-3279-2020, 2020
Short summary
A nonstationary analysis for investigating the multiscale variability of extreme surges: case of the English Channel coasts
Imen Turki, Lisa Baulon, Nicolas Massei, Benoit Laignel, Stéphane Costa, Matthieu Fournier, and Olivier Maquaire
Nat. Hazards Earth Syst. Sci., 20, 3225–3243, https://doi.org/10.5194/nhess-20-3225-2020,https://doi.org/10.5194/nhess-20-3225-2020, 2020
Short summary

Cited articles

Abadie, S., Gandon, C., Grilli, S., Fabre, R., Riss, J., Tric, E., and Morichon, D.: 3D numerical simulations of waves generated by subaerial mass failures. Application to La Palma Case, in: Proc. 31st Intl. Coastal Engng. Conf., edited by: Mc Kee Smith, J., ICCE08, Hamburg, Germany, September, 2008, 1384–1395, World Scientific Publishing Co. Pte. Ltd., https://doi.org/10.1142/9789814277426_0115, 2009. a
Arcement, G. J. and Schneider, V. R.: Guide for Selecting Manning's Roughness Coefficients for Natural Channels and Flood Plains, USGS Water-Supply papers, 2339, 44 pp., 1989. a
Basu, D., Das, K., Green, S., Janetzke, R., and Stamatakos, J.: Numerical simulation of surface waves generated by subaerial landslide at Lituya Bay Alaska, J. Offshore Mech. Eng., 132, 11, https://doi.org/10.1115/1.4001442, 2010. a
Bloom, C. K., Macinnes, B., Higman, B., Stark, C. P., Lynett, P., Ekström, G., Hibert, C., Willis, M. J., and Shugar, D. H.: Field observations from a massive landslide tsunami in Taan Fjord, Wrangell St. Elias National Park, AK, Geological Society of America Abstracts with Programs, vol. 48, https://doi.org/10.1130/abs/2016AM-285078, GSA Annual Meeting in Denver, Colorado, USA, 2016. a
Bouchut, F. and Westdickenberg, M.: Gravity driven shallow water model for arbitrary topography, Comm. Math. Sci., 2, 359–389, 2004. a
Publications Copernicus
Download
Short summary
In 1958, at Lituya Bay in Alaska, the largest tsunami wave ever recorded took place. Since then, its numerical simulation has been a challenge and no numerical model has been able to reproduce, in the real geometry of the bay, the more than 200 m wave and the extreme run-up (climbing of the water up on land) of 524 m. The aim of our research, in the framework of a collaboration between the University of Malága (Spain) and NOAA (US), was to fulfil this gap at the same time as verifying our model.
Citation
Altmetrics
Final-revised paper
Preprint