Journal cover Journal topic
Natural Hazards and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.102
IF3.102
IF 5-year value: 3.284
IF 5-year
3.284
CiteScore value: 5.1
CiteScore
5.1
SNIP value: 1.37
SNIP1.37
IPP value: 3.21
IPP3.21
SJR value: 1.005
SJR1.005
Scimago H <br class='widget-line-break'>index value: 90
Scimago H
index
90
h5-index value: 42
h5-index42
NHESS | Articles | Volume 19, issue 2
Nat. Hazards Earth Syst. Sci., 19, 369–388, 2019
https://doi.org/10.5194/nhess-19-369-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
Nat. Hazards Earth Syst. Sci., 19, 369–388, 2019
https://doi.org/10.5194/nhess-19-369-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 15 Feb 2019

Research article | 15 Feb 2019

The Lituya Bay landslide-generated mega-tsunami – numerical simulation and sensitivity analysis

José Manuel González-Vida et al.

Video supplement

Simulation of the 1958 Lituya Bay mega-tsunami J. Macías, M. de la Asunción, S. Ortega, J. M. González-Vida, and M. J. Castro https://doi.org/10.5446/39493

Publications Copernicus
Download
Short summary
In 1958, at Lituya Bay in Alaska, the largest tsunami wave ever recorded took place. Since then, its numerical simulation has been a challenge and no numerical model has been able to reproduce, in the real geometry of the bay, the more than 200 m wave and the extreme run-up (climbing of the water up on land) of 524 m. The aim of our research, in the framework of a collaboration between the University of Malága (Spain) and NOAA (US), was to fulfil this gap at the same time as verifying our model.
In 1958, at Lituya Bay in Alaska, the largest tsunami wave ever recorded took place. Since then,...
Citation
Final-revised paper
Preprint