Articles | Volume 19, issue 5
https://doi.org/10.5194/nhess-19-1105-2019
https://doi.org/10.5194/nhess-19-1105-2019
Research article
 | 
27 May 2019
Research article |  | 27 May 2019

Significance of substrate soil moisture content for rockfall hazard assessment

Louise Mary Vick, Valerie Zimmer, Christopher White, Chris Massey, and Tim Davies

Related authors

Exploratory analysis of the annual risk to life from debris flows
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2695,https://doi.org/10.5194/egusphere-2023-2695, 2023
Short summary
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023,https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Earthquake contributions to coastal cliff retreat
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, and Chris Massey
Earth Surf. Dynam., 11, 757–778, https://doi.org/10.5194/esurf-11-757-2023,https://doi.org/10.5194/esurf-11-757-2023, 2023
Short summary
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022,https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
The utility of earth science information in post-earthquake land-use decision-making: the 2010–2011 Canterbury earthquake sequence in Aotearoa New Zealand
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020,https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary

Related subject area

Landslides and Debris Flows Hazards
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024,https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Space–time landslide hazard modeling via Ensemble Neural Networks
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024,https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024,https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024,https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024,https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary

Cited articles

Azzoni, A. and de Freitas, M. H.: Experimentally gained parameters, decisive for rock fall analysis, Rock Mech. Rock Eng., 28, 111–124, https://doi.org/10.1007/BF01020064, 1995. 
Bannister, S. and Gledhill, K.: Evolution of the 2010–2012 Canterbury earthquake sequence, New Zeal. J. Geol. Geop., 55, 295–304, https://doi.org/10.1080/00288306.2012.680475, 2012. 
Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Christen, M., Dreier, L., Gerber, W., Glover, J., Schneider, M., Glocker, C., Leine, R., and Schweizer, A.: RAMMS::ROCKFALL User Manual v1.6., available at: http://ramms.slf.ch/ramms/downloads/RAMMS_ROCK_Manual.pdf (last access: 11 January 2019), 2016. 
Beavan, J., Fielding, E., Motagh, M., Samsonov, S., and Donnelly, N.: Fault Location and Slip Distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, Earthquake from Geodetic Data, Seismol. Res. Lett., 82, 789–799, https://doi.org/10.1785/gssrl.82.6.789, 2011. 
Bell, D. H. and Crampton, N. A.: Panel report: Engineering geological evaluation of tunnelling conditions, Lyttelton-Woolston LPG Project, Christchurch, New Zealand, in 5th International Congress of the International Association of Engineering Geology, AA Balkema, Buenos Aires, 2485–2502, 1986. 
Download
Short summary
Rockfall boulders can travel long distances downslope, and it is important to predict how far fatalities can be prevented. A comparison of earthquake data from New Zealand during summer and full-scale rockfall experiments in the same soil during winter shows that during dry seasons boulders travel further downslope because the soil is harder. When using predictive tools, engineers and geologists should take soil conditions (and seasonal variations thereof) into account.
Altmetrics
Final-revised paper
Preprint