Articles | Volume 19, issue 5
https://doi.org/10.5194/nhess-19-1105-2019
https://doi.org/10.5194/nhess-19-1105-2019
Research article
 | 
27 May 2019
Research article |  | 27 May 2019

Significance of substrate soil moisture content for rockfall hazard assessment

Louise Mary Vick, Valerie Zimmer, Christopher White, Chris Massey, and Tim Davies

Related authors

Coastal earthquake induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
EGUsphere, https://doi.org/10.5194/egusphere-2022-1320,https://doi.org/10.5194/egusphere-2022-1320, 2023
Short summary
Earthquake Contributions to Coastal Cliff Retreat
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, and Chris Massey
EGUsphere, https://doi.org/10.5194/egusphere-2022-643,https://doi.org/10.5194/egusphere-2022-643, 2022
Short summary
What drives landslide risk? Disaggregating risk analyses, an example from the Franz Josef Glacier and Fox Glacier valleys, New Zealand
Saskia de Vilder, Chris Massey, Biljana Lukovic, Tony Taig, and Regine Morgenstern
Nat. Hazards Earth Syst. Sci., 22, 2289–2316, https://doi.org/10.5194/nhess-22-2289-2022,https://doi.org/10.5194/nhess-22-2289-2022, 2022
Short summary
The utility of earth science information in post-earthquake land-use decision-making: the 2010–2011 Canterbury earthquake sequence in Aotearoa New Zealand
Mark C. Quigley, Wendy Saunders, Chris Massey, Russ Van Dissen, Pilar Villamor, Helen Jack, and Nicola Litchfield
Nat. Hazards Earth Syst. Sci., 20, 3361–3385, https://doi.org/10.5194/nhess-20-3361-2020,https://doi.org/10.5194/nhess-20-3361-2020, 2020
Short summary
What happens to fracture energy in brittle fracture? Revisiting the Griffith assumption
Timothy R. H. Davies, Maurice J. McSaveney, and Natalya V. Reznichenko
Solid Earth, 10, 1385–1395, https://doi.org/10.5194/se-10-1385-2019,https://doi.org/10.5194/se-10-1385-2019, 2019
Short summary

Related subject area

Landslides and Debris Flows Hazards
Statistical modeling of sediment supply in torrent catchments of the northern French Alps
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023,https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
A data-driven evaluation of post-fire landslide susceptibility
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023,https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023,https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Brief communication: The northwest Himalaya towns slipping towards potential disaster
Yaspal Sundriyal, Vipin Kumar, Neha Chauhan, Sameeksha Kaushik, Rahul Ranjan, and Mohit Kumar Punia
Nat. Hazards Earth Syst. Sci., 23, 1425–1431, https://doi.org/10.5194/nhess-23-1425-2023,https://doi.org/10.5194/nhess-23-1425-2023, 2023
Short summary
Dynamic response and breakage of trees subject to a landslide-induced air blast
Yu Zhuang, Aiguo Xing, Perry Bartelt, Muhammad Bilal, and Zhaowei Ding
Nat. Hazards Earth Syst. Sci., 23, 1257–1266, https://doi.org/10.5194/nhess-23-1257-2023,https://doi.org/10.5194/nhess-23-1257-2023, 2023
Short summary

Cited articles

Azzoni, A. and de Freitas, M. H.: Experimentally gained parameters, decisive for rock fall analysis, Rock Mech. Rock Eng., 28, 111–124, https://doi.org/10.1007/BF01020064, 1995. 
Bannister, S. and Gledhill, K.: Evolution of the 2010–2012 Canterbury earthquake sequence, New Zeal. J. Geol. Geop., 55, 295–304, https://doi.org/10.1080/00288306.2012.680475, 2012. 
Bartelt, P., Bieler, C., Bühler, Y., Christen, M., Christen, M., Dreier, L., Gerber, W., Glover, J., Schneider, M., Glocker, C., Leine, R., and Schweizer, A.: RAMMS::ROCKFALL User Manual v1.6., available at: http://ramms.slf.ch/ramms/downloads/RAMMS_ROCK_Manual.pdf (last access: 11 January 2019), 2016. 
Beavan, J., Fielding, E., Motagh, M., Samsonov, S., and Donnelly, N.: Fault Location and Slip Distribution of the 22 February 2011 Mw 6.2 Christchurch, New Zealand, Earthquake from Geodetic Data, Seismol. Res. Lett., 82, 789–799, https://doi.org/10.1785/gssrl.82.6.789, 2011. 
Bell, D. H. and Crampton, N. A.: Panel report: Engineering geological evaluation of tunnelling conditions, Lyttelton-Woolston LPG Project, Christchurch, New Zealand, in 5th International Congress of the International Association of Engineering Geology, AA Balkema, Buenos Aires, 2485–2502, 1986. 
Download
Short summary
Rockfall boulders can travel long distances downslope, and it is important to predict how far fatalities can be prevented. A comparison of earthquake data from New Zealand during summer and full-scale rockfall experiments in the same soil during winter shows that during dry seasons boulders travel further downslope because the soil is harder. When using predictive tools, engineers and geologists should take soil conditions (and seasonal variations thereof) into account.
Altmetrics
Final-revised paper
Preprint