Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-3153-2018
https://doi.org/10.5194/nhess-18-3153-2018
Research article
 | 
23 Nov 2018
Research article |  | 23 Nov 2018

Impact of wildfires on Canada's oil sands facilities

Nima Khakzad

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Alexander, M. E.: Calculating and interpreting forest fire intensities, Can. J. Botany, 60, 349–357, 1982.
Alexander, M. E. and Cruz, M. G.: Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height, Int. J. Wildland Fire, 21, 95–113, 2012.
American Petroleum Institute (API): Fire-protection considerations for the design and operation of liquefied petroleum gas (LPG) storage facilities, Publication 2510A, 2nd edition, American Petroleum Institute, Washington DC, US, 1996.
Andrews, P. L.: Current status and future needs of the BehavePlus Fire Modeling System, Int. J. Wildland Fire, 23, 21–33, 2013.
Anderson, K. R.: A model to predict lightning-caused fire occurrences, Int. J. Wildland Fire, 11, 174–182, 2002.
Download
Short summary
The growing oil sands operations in Canada's wildlands on the one hand and an anticipated increase in the frequency of wildfires, due to global warming, on the other hand can jeopardize the safety and integrity of oil sands facilities. The present study aims to develop a methodology, based on the Canadian Wildland Fire Information System and quantitative risk assessment techniques, for assessing the impact of wildfires on wildland–industrial interfaces with an emphasis on oil sands facilities.
Altmetrics
Final-revised paper
Preprint