Articles | Volume 18, issue 11
https://doi.org/10.5194/nhess-18-3145-2018
https://doi.org/10.5194/nhess-18-3145-2018
Brief communication
 | 
23 Nov 2018
Brief communication |  | 23 Nov 2018

Brief Communication: Measuring rock decelerations and rotation changes during short-duration ground impacts

Andrin Caviezel and Werner Gerber

Related authors

Shape still matters: rockfall interactions with trees and deadwood in a mountain forest uncover a new facet of rock shape dependency
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 11, 779–801, https://doi.org/10.5194/esurf-11-779-2023,https://doi.org/10.5194/esurf-11-779-2023, 2023
Short summary
Modeling deadwood for rockfall mitigation assessments in windthrow areas
Adrian Ringenbach, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Yves Bühler, Andreas Stoffel, and Andrin Caviezel
Earth Surf. Dynam., 10, 1303–1319, https://doi.org/10.5194/esurf-10-1303-2022,https://doi.org/10.5194/esurf-10-1303-2022, 2022
Short summary
Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models
François Noël, Michel Jaboyedoff, Andrin Caviezel, Clément Hibert, Franck Bourrier, and Jean-Philippe Malet
Earth Surf. Dynam., 10, 1141–1164, https://doi.org/10.5194/esurf-10-1141-2022,https://doi.org/10.5194/esurf-10-1141-2022, 2022
Short summary
Full-scale experiments to examine the role of deadwood in rockfall dynamics in forests
Adrian Ringenbach, Elia Stihl, Yves Bühler, Peter Bebi, Perry Bartelt, Andreas Rigling, Marc Christen, Guang Lu, Andreas Stoffel, Martin Kistler, Sandro Degonda, Kevin Simmler, Daniel Mader, and Andrin Caviezel
Nat. Hazards Earth Syst. Sci., 22, 2433–2443, https://doi.org/10.5194/nhess-22-2433-2022,https://doi.org/10.5194/nhess-22-2433-2022, 2022
Short summary
Automated avalanche hazard indication mapping on a statewide scale
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022,https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Altshuler, E., Torres, H., Gonzáalez-Pita, A., Sánchez-Colina, G., Pérez-Penichet, C., Waitukaitis, S., and Hidalgo, R. C.: Settling into dry granular media in different gravities, Geophys. Res. Lett., 41, 3032–3037, 2014. a
Asteriou, P., Saroglou, H., and Tsiambaos, G.: Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis, Int. J. Rock Mech. Min. Sci., 54, 103–113, 2012. a
Caviezel, A., Bühler, Y., Christen, M., and Bartelt, P.: Induced Rockfall Dataset (Small Rock Experimental Campaign), Tschamut, Grisons, Switzerland; WSL Institute for Snow and Avalanche Research SLF; https://doi.org/10.16904/envidat.37, 2018a. a
Caviezel, A., Bühler, Y., Lu, G., Christen, M., and Bartelt, P.: Proceedings of the 9th European Conference on Numerical Methods in Geotechnical Engineering, 25–27 June, Porto (Portugal), 875–886, 2018b. a, b, c
Caviezel, A., Schaffner, M., Cavigelli, L., Niklaus, P., Bühler, Y., Bartelt, P., Magno, M., and Benini, L.: Design and Evaluation of a Low-Power Sensor Device for Induced Rockfall Experiments, IEEE T. Instrum. Meas., 67, 767–779, 2018c. a, b, c, d
Download
Short summary
Anticipating the flight path of a bouncing object holds fascination for playing children and scientists alike. While the path of a ball can be judged easily, the erratic rebound behavior of complexly shaped forms are intriguing. Here, we focus on the timescales and rotation changes during real rock–ground impacts while traveling down a slope. Specialized sensors inside the rock track those changes and reveal contact times in the millisecond range defining the overall flight path behavior.
Altmetrics
Final-revised paper
Preprint