Articles | Volume 14, issue 3
https://doi.org/10.5194/nhess-14-525-2014
https://doi.org/10.5194/nhess-14-525-2014
Research article
 | 
04 Mar 2014
Research article |  | 04 Mar 2014

Application of GA–SVM method with parameter optimization for landslide development prediction

X. Z. Li and J. M. Kong

Related authors

Landslides Data Assimilation Using TRIGRS Based on Particle Filtering
Changhu Xue, Guigen Nie, Jie Dong, Shuguang Wu, Jing Wang, Xiuzhen Li, and Xiaogang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-16,https://doi.org/10.5194/nhess-2019-16, 2019
Revised manuscript not accepted
Short summary

Related subject area

Landslides and Debris Flows Hazards
Limit analysis of earthquake-induced landslides considering two strength envelopes
Di Wu, Yuke Wang, and Xin Chen
Nat. Hazards Earth Syst. Sci., 24, 4617–4630, https://doi.org/10.5194/nhess-24-4617-2024,https://doi.org/10.5194/nhess-24-4617-2024, 2024
Short summary
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024,https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary

Cited articles

Ballabio, C. and Sterlacchini, S.: Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy, Math. Geosci., 44, 47–70, 2012.
Chang, C. C. and Lin, C. J.: LIBSVM: a library for support vector machines, ACM Trans. Int. Syst. Technol., 2, 1–39, 2001.
Cherkassky, V. and Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks, 17, 113–126, 2004.
Choudhry, R. and Garg, K.: A hybrid machine learning system for stock market forecasting, World Academy of Science, Eng. Technol., 39, 315–318, 2009.
Corominas, J., Moya, J., Ledesma, A., Lloret, A., and Gili, J. A.: Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain), Landslides, 2, 83–96, 2005.
Download
Altmetrics
Final-revised paper
Preprint