Articles | Volume 14, issue 3
https://doi.org/10.5194/nhess-14-525-2014
https://doi.org/10.5194/nhess-14-525-2014
Research article
 | 
04 Mar 2014
Research article |  | 04 Mar 2014

Application of GA–SVM method with parameter optimization for landslide development prediction

X. Z. Li and J. M. Kong

Related authors

Landslides Data Assimilation Using TRIGRS Based on Particle Filtering
Changhu Xue, Guigen Nie, Jie Dong, Shuguang Wu, Jing Wang, Xiuzhen Li, and Xiaogang Zhang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-16,https://doi.org/10.5194/nhess-2019-16, 2019
Revised manuscript not accepted
Short summary

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

Ballabio, C. and Sterlacchini, S.: Support Vector Machines for Landslide Susceptibility Mapping: The Staffora River Basin Case Study, Italy, Math. Geosci., 44, 47–70, 2012.
Chang, C. C. and Lin, C. J.: LIBSVM: a library for support vector machines, ACM Trans. Int. Syst. Technol., 2, 1–39, 2001.
Cherkassky, V. and Ma, Y.: Practical selection of SVM parameters and noise estimation for SVM regression, Neural Networks, 17, 113–126, 2004.
Choudhry, R. and Garg, K.: A hybrid machine learning system for stock market forecasting, World Academy of Science, Eng. Technol., 39, 315–318, 2009.
Corominas, J., Moya, J., Ledesma, A., Lloret, A., and Gili, J. A.: Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain), Landslides, 2, 83–96, 2005.
Download
Altmetrics
Final-revised paper
Preprint