Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-643-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-643-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Characteristics and causes of natural and human-induced landslides in a tropical mountainous region: the rift flank west of Lake Kivu (Democratic Republic of the Congo)
Jean-Claude Maki Mateso
CORRESPONDING AUTHOR
Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of the Congo
Environmental Sciences, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Charles L. Bielders
Environmental Sciences, Earth and Life Institute, Université catholique de Louvain, Louvain-La-Neuve, Belgium
Elise Monsieurs
Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Department of Geography, University of Liège, Liège, Belgium
F.R.S.-FNRS, Brussels, Belgium
Arthur Depicker
Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
Benoît Smets
Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Department of Geography, Vrije Universiteit Brussel, Brussels, Belgium
Théophile Tambala
Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of the Congo
Luc Bagalwa Mateso
Department of Geophysics, Centre de Recherche en Sciences Naturelles, Lwiro, Democratic Republic of the Congo
Olivier Dewitte
Department of Earth Sciences, Royal Museum for Central Africa, Tervuren, Belgium
Related authors
No articles found.
Antoine Dille, Olivier Dewitte, Jente Broeckx, Koen Verbist, Andile Sindiso Dube, Jean Poesen, and Matthias Vanmaercke
EGUsphere, https://doi.org/10.5194/egusphere-2025-5056, https://doi.org/10.5194/egusphere-2025-5056, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
In mountain regions, intense rainfall can trigger thousands of landslides within hours. Yet, while most efforts focus on where landslides start, the worst impacts often occur far downstream because slope material can mix with large runoffs. Studying Cyclone Idai’s impacts in eastern Zimbabwe, we found that landslide sources explain only one-fifth of total population exposure, highlighting the need to consider the full landslide–flood continuum to better protect people and plan safer landscapes.
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022, https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Short summary
Landslides and flash floods are rainfall-induced processes that often co-occur and interact, generally very quickly. In mountainous cloud-covered environments, determining when these processes occur remains challenging. We propose a regional methodology using open-access satellite radar images that allow for the timing of landslide and flash floods events, in the contrasting landscapes of tropical Africa, with an accuracy of up to a few days. The methodology shows potential for transferability.
Arthur Depicker, Gerard Govers, Liesbet Jacobs, Benjamin Campforts, Judith Uwihirwe, and Olivier Dewitte
Earth Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, https://doi.org/10.5194/esurf-9-445-2021, 2021
Short summary
Short summary
We investigated how shallow landslide occurrence is impacted by deforestation and rifting in the North Tanganyika–Kivu rift region (Africa). We developed a new approach to calculate landslide erosion rates based on an inventory compiled in biased © Google Earth imagery. We find that deforestation increases landslide erosion by a factor of 2–8 and for a period of roughly 15 years. However, the exact impact of deforestation depends on the geomorphic context of the landscape (rejuvenated/relict).
Cited articles
Albino, F., Smets, B., D'Oreye, N., and Kervyn, F.: High-resolution TanDEM-X
DEM: An accurate method to estimate lava flow volumes at Nyamulagira Volcano
(D. R. Congo), J. Geophys. Res.-Solid Earth, 120, 4189–4207,
https://doi.org/10.1002/2015JB011988, 2015.
Aleman, J. C., Jarzyna, M. A., and Staver, A. C.: Forest extent and
deforestation in tropical Africa since 1900, Nat. Ecol. Evol., 2, 26–33,
https://doi.org/10.1038/s41559-017-0406-1, 2018.
Arca, D., Kutoğlu, H. Ş., and Becek, K.: Landslide susceptibility
mapping in an area of underground mining using the multicriteria decision
analysis method, Environ. Monit. Assess., 190, 725,
https://doi.org/10.1007/s10661-018-7085-5, 2018.
Bashwira, M.-R., Cuvelier, J., Hilhorst, D., and van der Haar, G.: Not only
a man's world: Women's involvement in artisanal mining in eastern DRC,
Resour. Policy, 40, 109–116,
https://doi.org/10.1016/j.resourpol.2013.11.002, 2014.
Basnet, B. and Vodacek, A.: Tracking Land Use/Land Cover Dynamics in Cloud
Prone Areas Using Moderate Resolution Satellite Data: A Case Study in
Central Africa, Remote Sens., 7, 6683–6709,
https://doi.org/10.3390/rs70606683, 2015.
Bennett, G. L., Miller, S. R., Roering, J. J., and Schmidt, D. A.:
Landslides, threshold slopes, and the survival of relict terrain in the wake
of the Mendocino Triple Junction, Geology, 44, 363–366,
https://doi.org/10.1130/G37530.1, 2016.
Brenning, A.: Improved spatial analysis and prediction of landslide
susceptibility: Practical recommendations, in: Landslides and Engineered
Slopes: Protecting Society Through Improved Understanding, Chapter Improved
Spatial Analysis and Prediction of Landslide Susceptibility: Practical
Recommendations, Taylor & Francis, Alberta, edited by: Eberhardt, E., Froese, C., Turner, A. K.,and Leroueil, S., ISBN 978-041562123-6, 789–794, 2012.
Brenning, A., Schwinn, M., Ruiz-Páez, A. P., and Muenchow, J.: Landslide susceptibility near highways is increased by 1 order of magnitude in the Andes of southern Ecuador, Loja province, Nat. Hazards Earth Syst. Sci., 15, 45–57, https://doi.org/10.5194/nhess-15-45-2015, 2015.
Broeckx, J., Vanmaercke, M., Duchateau, R., and Poesen, J.: A data-based
landslide susceptibility map of Africa, Earth-Sci. Rev., 185, 102–121,
https://doi.org/10.1016/j.earscirev.2018.05.002, 2018.
Butsic, V., Baumann, M., Shortland, A., Walker, S., and Kuemmerle, T.:
Conservation and conflict in the Democratic Republic of Congo: The impacts
of warfare, mining, and protected areas on deforestation, Biol. Conserv.,
191, 266–273, https://doi.org/10.1016/j.biocon.2015.06.037, 2015.
Chen, L., Guo, Z., Yin, K., Shrestha, D. P., and Jin, S.: The influence of land use and land cover change on landslide susceptibility: a case study in Zhushan Town, Xuan'en County (Hubei, China), Nat. Hazards Earth Syst. Sci., 19, 2207–2228, https://doi.org/10.5194/nhess-19-2207-2019, 2019.
Cirimwami, L., Doumenge, C., Kahindo, J.-M., and Amani, C.: The effect of
elevation on species richness in tropical forests depends on the considered
lifeform: results from an East African mountain forest, Trop. Ecol., 60,
473–484, https://doi.org/10.1007/s42965-019-00050-z, 2019.
DeFries, R. S., Rudel, T., Uriarte, M., and Hansen, M.: Deforestation driven
by urban population growth and agricultural trade in the twenty-first
century, Nat. Geosci., 3, 178–181, https://doi.org/10.1038/ngeo756, 2010.
Delvaux, D., Mulumba, J.-L., Sebagenzi, M. N. S., Bondo, S. F., Kervyn, F.,
and Havenith, H.-B.: Seismic hazard assessment of the Kivu rift segment
based on a new seismotectonic zonation model (western branch, East African
Rift system), J. African Earth Sci., 134, 831–855,
https://doi.org/10.1016/j.jafrearsci.2016.10.004, 2017.
Depicker, A., Jacobs, L., Delvaux, D., Havenith, H.-B., Maki Mateso, J.-C.,
Govers, G., and Dewitte, O.: The added value of a regional landslide
susceptibility assessment: The western branch of the East African Rift,
Geomorphology, 353, 106886, https://doi.org/10.1016/j.geomorph.2019.106886,
2020.
Depicker, A., Jacobs, L., Mboga, N., Smets, B., Van Rompaey, A., Lennert,
M., Wolff, E., Kervyn, F., Michellier, C., Dewitte, O., and Govers, G.:
Historical dynamics of landslide risk from population and forest-cover
changes in the Kivu Rift, Nat. Sustain., 4, 965–974,
https://doi.org/10.1038/s41893-021-00757-9, 2021a.
Depicker, A., Govers, G., Jacobs, L., Campforts, B., Uwihirwe, J., and
Dewitte, O.: Interactions between deforestation, landscape rejuvenation, and
shallow landslides in the North Tanganyika–Kivu rift region, Africa, Earth
Surf. Dynam., 9, 445–462, https://doi.org/10.5194/esurf-9-445-2021, 2021b.
Dewitte, O., Dille, A., Depicker, A., Kubwimana, D., Maki Mateso, J.-C.,
Mugaruka Bibentyo, T., Uwihirwe, J., and Monsieurs, E.: Constraining
landslide timing in a data-scarce context: from recent to very old processes
in the tropical environment of the North Tanganyika-Kivu Rift region,
Landslides, 18, 161–177, https://doi.org/10.1007/s10346-020-01452-0, 2021.
Dewitte, O., Depicker, A., Moeyersons, J., and Dille, A.: Mass Movements in
Tropical Climates, in: Treatise on Geomorphology, vol. 5, edited by:
Shroder, J. J. F., Elsevier, 338–349,
https://doi.org/10.1016/B978-0-12-818234-5.00118-8, 2022.
Dille, A., Kervyn, F., Mugaruka Bibentyo, T., Delvaux, D., Ganza, G. B.,
Ilombe Mawe, G., Kalikone Buzera, C., Safari Nakito, E., Moeyersons, J.,
Monsieurs, E., Nzolang, C., Smets, B., Kervyn, M., and Dewitte, O.: Causes
and triggers of deep-seated hillslope instability in the tropics – Insights
from a 60-year record of Ikoma landslide (DR Congo), Geomorphology, 345,
106835, https://doi.org/10.1016/j.geomorph.2019.106835, 2019.
Drake, T. W., Van Oost, K., Barthel, M., Bauters, M., Hoyt, A. M.,
Podgorski, D. C., Six, J., Boeckx, P., Trumbore, S. E., Cizungu Ntaboba, L.,
and Spencer, R. G. M.: Mobilization of aged and biolabile soil carbon by
tropical deforestation, Nat. Geosci., 12, 541–546,
https://doi.org/10.1038/s41561-019-0384-9, 2019.
Emberson, R., Kirschbaum, D., and Stanley, T.: New global characterisation of landslide exposure, Nat. Hazards Earth Syst. Sci., 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020, 2020.
ESA: ESA Climate Change Initiative – Africa Land Cover Project 2017, 20 m
Resolution, Eur. Sp. Agency [data set], https://2016africalandcover20m.esrin.esa.int/ (lass access: 2 March 2020). , 2016.
Fang, Z., Wang, Y., Peng, L., and Hong, H.: Integration of convolutional
neural network and conventional machine learning classifiers for landslide
susceptibility mapping, Comput. Geosci., 139, 104470,
https://doi.org/10.1016/j.cageo.2020.104470, 2020.
Felton, A. A., Russell, J. M., Cohen, A. S., Baker, M. E., Chesley, J. T.,
Lezzar, K. E., McGlue, M. M., Pigati, J. S., Quade, J., Curt Stager, J., and
Tiercelin, J. J.: Paleolimnological evidence for the onset and termination
of glacial aridity from Lake Tanganyika, Tropical East Africa, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 252, 405–423,
https://doi.org/10.1016/j.palaeo.2007.04.003, 2007.
Fisher, G. B., Amos, C. B., Bookhagen, B., Burbank, D. W., and Godard, V.:
Channel widths, landslides, faults, and beyond: The new world order of
high-spatial resolution Google Earth imagery in the study of earth surface
processes, in: Google Earth and Virtual Visualizations in Geoscience
Education and Research, vol. 492, Geological Society of America, 1–22,
https://doi.org/10.1130/2012.2492(01), 2012.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Geenen, S.: A dangerous bet: The challenges of formalizing artisanal mining
in the Democratic Republic of Congo, Resour. Pol., 37, 322–330,
https://doi.org/10.1016/j.resourpol.2012.02.004, 2012.
Glade, T.: Landslide occurrence as a response to land use change: a review
of evidence from New Zealand, Catena, 51, 297–314,
https://doi.org/10.1016/S0341-8162(02)00170-4, 2003.
Grima, N., Edwards, D., Edwards, F., Petley, D., and Fisher, B.: Landslides
in the Andes: Forests can provide cost-effective landslide regulation
services, Sci. Total Environ., 745, 141128,
https://doi.org/10.1016/j.scitotenv.2020.141128, 2020.
Guns, M. and Vanacker, V.: Shifts in landslide frequency–area distribution
after forest conversion in the tropical Andes, Anthropocene, 6, 75–85,
https://doi.org/10.1016/j.ancene.2014.08.001, 2014.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M.,
and Chang, K.: Landslide inventory maps: New tools for an old problem,
Earth-Sci. Rev., 112, 42–66,
https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Haberyan, K. A. and Hecky, R. E.: The late Pleistocene and Holocene
stratigraphy and paleolimnology of Lakes Kivu and Tanganyika, Palaeogeogr.
Palaeoclimatol. Palaeoecol., 61, 169–197,
https://doi.org/10.1016/0031-0182(87)90048-4, 1987.
Heri-Kazi, A. B. and Bielders, C. L.: “Cropland characteristics and extent
of soil loss by rill and gully erosion in smallholder farms in the KIVU
highlands, D.R. Congo,” Geoderma Reg., 26, e00404,
https://doi.org/10.1016/j.geodrs.2021.e00404, 2021a.
Heri-Kazi, A. B. and Bielders, C. L.: Erosion and soil and water
conservation in South-Kivu (eastern DR Congo): The farmers' view, L. Degrad.
Dev., 32, 699–713, https://doi.org/10.1002/ldr.3755, 2021b.
Hosmer, D. W. and Lemeshow, S.: Applied Logistic Regression, 2nd Edn., John
Wiley and Sons, New York, 375 pp., https://onlinelibrary.wiley.com/doi/book/10.1002/0471722146 (last access: 2 Febuary 2023), 2000.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
Imani, G., Boyemba, F., Lewis, S., Nabahungu, N. L., Calders, K., Zapfack,
L., Riera, B., Balegamire, C., and Cuni-Sanchez, A.: Height-diameter
allometry and above ground biomass in tropical montane forests: Insights
from the Albertine Rift in Africa, PLoS One, 12, e0179653,
https://doi.org/10.1371/journal.pone.0179653, 2017.
Jacobs, L., Dewitte, O., Poesen, J., Maes, J., Mertens, K., Sekajugo, J.,
and Kervyn, M.: Landslide characteristics and spatial distribution in the
Rwenzori Mountains, Uganda, J. African Earth Sci., 134, 917–930,
https://doi.org/10.1016/j.jafrearsci.2016.05.013, 2017.
Jacobs, L., Dewitte, O., Poesen, J., Sekajugo, J., Nobile, A., Rossi, M., Thiery, W., and Kervyn, M.: Field-based landslide susceptibility assessment in a data-scarce environment: the populated areas of the Rwenzori Mountains, Nat. Hazards Earth Syst. Sci., 18, 105–124, https://doi.org/10.5194/nhess-18-105-2018, 2018.
Jaillon, A.: Maps of conflict minerals in eastern DRC – A0 posters
(International Peace Information Service, access: 25 September 2020) https://ipisresearch.be/publication/map-conflict-minerals-eastern-drc-a0-posters/ (last access: 2 Febuary 2023),
2020.
Jones, J. N., Boulton, S. J., Bennett, G. L., Stokes, M., and Whitworth, M.
R. Z.: Temporal Variations in Landslide Distributions Following Extreme
Events: Implications for Landslide Susceptibility Modeling, J. Geophys. Res.-Earth Surf., 126, 1–26, https://doi.org/10.1029/2021JF006067, 2021.
Kampunzu, A. B., Bonhomme, M. G., and Kanika, M.: Geochronology of volcanic
rocks and evolution of the Cenozoic western branch of the East African Rift
system, J. African Earth Sci., 26, 441–461,
https://doi.org/10.1016/S0899-5362(98)00025-6, 1998.
Keefer, D. K.: Landslides caused by earthquakes, Geol. Soc. Am. Bull., 95,
406–421, https://doi.org/https://doi.org/10.1130/0016-7606(1984)95, 1984.
Kirschbaum, D. B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., and
Lerner-Lam, A.: Advances in landslide nowcasting: evaluation of a global and
regional modeling approach, Environ. Earth Sci., 66, 1683–1696,
https://doi.org/10.1007/s12665-011-0990-3, 2012.
Kleinbaum, D. G. and Klein, M.: Logistic Regression, edited by:
Intergovernmental Panel on Climate Change, Springer New York, New York, NY,
167-73 pp., https://doi.org/10.1007/978-1-4419-1742-3, 2010.
Kubwimana, D., Ait Brahim, L., Nkurunziza, P., Dille, A., Depicker, A.,
Nahimana, L., Abdelouafi, A., and Dewitte, O.: Characteristics and
Distribution of Landslides in the Populated Hillslopes of Bujumbura,
Burundi, Geosciences, 11, 259, https://doi.org/10.3390/geosciences11060259,
2021.
Laghmouch, M., Kalikone, C. B., Ganza, G. B., Delvaux, D., Bachinyaga, J.,
Wazi, N., Nzolang, C., Fernandez, M., Nimpagaritse, G., Tack, L., Dewaele,
S., and Kervyn, F.: Carte géologique du Kivu au 1/500 000, ISBN 9789492669438, 2018.
LaHusen, S. R., Duvall, A. R., Booth, A. M., Grant, A., Mishkin, B. A.,
Montgomery, D. R., Struble, W., Roering, J. J., and Wartman, J.: Rainfall
triggers more deep-seated landslides than Cascadia earthquakes in the Oregon
Coast Range, USA, Sci. Adv., 6, eaba6790,
https://doi.org/10.1126/sciadv.aba6790, 2020.
Lee, S. and Pradhan, B.: Landslide hazard mapping at Selangor, Malaysia
using frequency ratio and logistic regression models, Landslides, 4, 33–41,
https://doi.org/10.1007/s10346-006-0047-y, 2007.
Lee, S., Ryu, J.-H., and Kim, I.-S.: Landslide susceptibility analysis and
its verification using likelihood ratio, logistic regression, and artificial
neural network models: case study of Youngin, Korea, Landslides, 4,
327–338, https://doi.org/10.1007/s10346-007-0088-x, 2007.
Linard, C., Gilbert, M., Snow, R. W., Noor, A. M., and Tatem, A. J.:
Population Distribution, Settlement Patterns and Accessibility across Africa
in 2010, PLoS One, 7, e31743, https://doi.org/10.1371/journal.pone.0031743,
2012.
Maki Mateso, J.-C. and Dewitte, O.: Towards an inventory of landslide
processes and the elements at risk on the Rift flanks West of Lake Kivu
(DRC), Geo. Eco. Trop., 38, 137–154, 2014.
Malamud, B. D., Turcotte, D. L., Guzzetti, F., and Reichenbach, P.:
Landslide inventories and their statistical properties, Earth Surf. Process.
Landf., 29, 687–711, https://doi.org/10.1002/esp.1064, 2004.
Marc, O. and Hovius, N.: Amalgamation in landslide maps: effects and automatic detection, Nat. Hazards Earth Syst. Sci., 15, 723–733, https://doi.org/10.5194/nhess-15-723-2015, 2015.
Marc, O., Behling, R., Andermann, C., Turowski, J. M., Illien, L., Roessner,
S., and Hovius, N.: Long-term erosion of the Nepal Himalayas by bedrock
landsliding: the role of monsoons, earthquakes and giant landslides, Earth
Surf. Dynam., 7, 107–128, https://doi.org/10.5194/esurf-7-107-2019, 2019.
Masi, E. B., Segoni, S., and Tofani, V.: Root Reinforcement in Slope
Stability Models: A Review, Geosciences, 11, 212,
https://doi.org/10.3390/geosciences11050212, 2021.
Masumbuko, N. C., Habiyaremye, M. F., and Lejoly, J.: Woody climbing plants
influence the structure of the mountain forest in the Kahuzi-Biega National
Park, DR Congo, Reg. Environ. Chang., 12, 951–959,
https://doi.org/10.1007/s10113-012-0309-2, 2012.
McAdoo, B. G., Quak, M., Gnyawali, K. R., Adhikari, B. R., Devkota, S., Rajbhandari, P. L., and Sudmeier-Rieux, K.: Roads and landslides in Nepal: how development affects environmental risk, Nat. Hazards Earth Syst. Sci., 18, 3203–3210, https://doi.org/10.5194/nhess-18-3203-2018, 2018.
Meunier, P., Hovius, N., and Haines, J. A.: Topographic site effects and the
location of earthquake induced landslides, Earth Planet. Sci. Lett., 275,
221–232, https://doi.org/10.1016/j.epsl.2008.07.020, 2008.
Michellier, C., Pigeon, P., Kervyn, F., and Wolff, E.: Contextualizing
vulnerability assessment: a support to geo-risk management in central
Africa, Nat. Hazards, 82, 27–42, https://doi.org/10.1007/s11069-016-2295-z,
2016.
Migoń, P.: 4.10 Weathering and Hillslope Development, in: Treatise on
Geomorphology, vol. 4, edited by: Shroder, J. F., Elsevier, San Diego,
159–178, https://doi.org/10.1016/B978-0-12-374739-6.00075-0, 2013.
Milledge, D. G., Bellugi, D., McKean, J. A., Densmore, A. L., and Dietrich,
W. E.: A multidimensional stability model for predicting shallow landslide
size and shape across landscapes, J. Geophys. Res.-Earth Surf., 119,
2481–2504, https://doi.org/10.1002/2014JF003135, 2014.
Mokoso, J. M., Habiyaremye, F. M., Janssen, T., van Diggelen, R., Robbrecht,
E., and Habimana, H. N.: Diversité des Fougères et leurs alliées
le long du gradient altitudinal au sein de l'écosystème forestier
des montagnes du Parc National de Kahuzi-Biega (RD CONGO), Int. J. Environ.
Stud., 70, 259–283, https://doi.org/10.1080/00207233.2013.778007, 2013.
Monsieurs, E., Kirschbaum, D. B., Tan, J., Maki Mateso, J.-C., Jacobs, L.,
Plisnier, P.-D., Thiery, W., Umutoni, A., Musoni, D., Bibentyo, T. M.,
Ganza, G. B., Mawe, G. I., Bagalwa, L., Kankurize, C., Michellier, C.,
Stanley, T., Kervyn, F., Kervyn, M., Demoulin, A., and Dewitte, O.:
Evaluating TMPA Rainfall over the Sparsely Gauged East African Rift, J.
Hydrometeorol., 19, 1507–1528, https://doi.org/10.1175/JHM-D-18-0103.1,
2018a.
Monsieurs, E., Jacobs, L., Michellier, C., Basimike Tchangaboba, J., Ganza,
G. B., Kervyn, F., Maki Mateso, J.-C., Mugaruka Bibentyo, T., Kalikone
Buzera, C., Nahimana, L., Ndayisenga, A., Nkurunziza, P., Thiery, W.,
Demoulin, A., Kervyn, M., and Dewitte, O.: Landslide inventory for hazard
assessment in a data-poor context: a regional-scale approach in a tropical
African environment, Landslides, 15, 2195–2209,
https://doi.org/10.1007/s10346-018-1008-y, 2018b.
Mugagga, F., Kakembo, V., and Buyinza, M.: A characterisation of the
physical properties of soil and the implications for landslide occurrence on
the slopes of Mount Elgon, Eastern Uganda, Nat. Hazards, 60, 1113–1131,
https://doi.org/10.1007/s11069-011-9896-3, 2012.
Muñoz-Torrero Manchado, A., Allen, S., Ballesteros-Cánovas, J. A.,
Dhakal, A., Dhital, M. R., and Stoffel, M.: Three decades of landslide
activity in western Nepal: new insights into trends and climate drivers,
Landslides, 18, 2001–2015, https://doi.org/10.1007/s10346-021-01632-6,
2021.
Musumba Teso, P., Kavira, M., and Katcho, K.: Key Factors Driving
Deforestation in North-Kivu Province, Eastern DR-Congo Using GIS and Remote
Sensing, Am. J. Geogr. Inf. Syst., 8, 11–25, http://article.sapub.org/10.5923.j.ajgis.20190801.02.html (last access: 3 March 2021), 2019.
Nzabandora, C. K. and Roche, E.: Six millennia of environment evolving on
the western ridge of the Kivu Lake in the Mount Kahuzi area (D.R. Congo)
Palynological analysis of the Ngushu sedimentary sequence, Geo. Eco. Trop.,
39, 1–26, 2015.
OpenStreetMap: Changesets, OpenStreetMap [data set], https://www.openstreetmap.org/history#map=9/-2.0475/28.5535, last access: 15 July 2020.
Pánek, T., Břežný, M., Kilnar, J., and Winocur, D.: Complex
causes of landslides after ice sheet retreat: Post-LGM mass movements in the
Northern Patagonian Icefield region, Sci. Total Environ., 758, 143684,
https://doi.org/10.1016/j.scitotenv.2020.143684, 2021.
Parker, R. N., Hales, T. C., Mudd, S. M., Grieve, S. W. D. D., and
Constantine, J. A.: Colluvium supply in humid regions limits the frequency
of storm-triggered landslides, Sci. Rep., 6, 34438,
https://doi.org/10.1038/srep34438, 2016.
Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world map of the Köppen-Geiger climate classification, Hydrol. Earth Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-2007, 2007.
Prakash, N., Manconi, A., and Loew, S.: A new strategy to map landslides
with a generalized convolutional neural network, Sci. Rep., 11, 9722,
https://doi.org/10.1038/s41598-021-89015-8, 2021.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A
review of statistically-based landslide susceptibility models, Earth-Sci.
Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Ross, K. A., Smets, B., De Batist, M., Hilbe, M., Schmid, M., and
Anselmetti, F. S.: Lake-level rise in the late Pleistocene and active
subaquatic volcanism since the Holocene in Lake Kivu, East African Rift,
Geomorphology, 221, 274–285,
https://doi.org/10.1016/j.geomorph.2014.05.010, 2014.
Rossi, M.: maurorossi/LAND-SE v1r0b30 (v1r0b30), Zenodo [code], https://doi.org/10.5281/zenodo.154723, 2016.
Rossi, M. and Reichenbach, P.: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0, Geosci. Model Dev., 9, 3533–3543, https://doi.org/10.5194/gmd-9-3533-2016, 2016.
Shu, H., Hürlimann, M., Molowny-Horas, R., González, M., Pinyol, J.,
Abancó, C., and Ma, J.: Relation between land cover and landslide
susceptibility in Val d'Aran, Pyrenees (Spain): Historical aspects, present
situation and forward prediction, Sci. Total Environ., 693, 133557,
https://doi.org/10.1016/j.scitotenv.2019.07.363, 2019.
Sidle, R. C. and Bogaard, T. A.: Dynamic earth system and ecological
controls of rainfall-initiated landslides, Earth-Sci. Rev., 159,
275–291, https://doi.org/10.1016/j.earscirev.2016.05.013, 2016.
Sidle, R. C., Ziegler, A. D., Negishi, J. N., Nik, A. R., Siew, R., and
Turkelboom, F.: Erosion processes in steep terrain – Truths, myths, and
uncertainties related to forest management in Southeast Asia, For. Ecol.
Manage., 224, 199–225, https://doi.org/10.1016/j.foreco.2005.12.019, 2006.
Smets, B., Delvaux, D., Ross, K. A., Poppe, S., Kervyn, M., d'Oreye, N., and
Kervyn, F.: The role of inherited crustal structures and magmatism in the
development of rift segments: Insights from the Kivu basin, western branch
of the East African Rift, Tectonophysics, 683, 62–76,
https://doi.org/10.1016/j.tecto.2016.06.022, 2016.
Stanley, T. and Kirschbaum, D. B.: A heuristic approach to global landslide
susceptibility mapping, Nat. Hazards, 87, 145–164,
https://doi.org/10.1007/s11069-017-2757-y, 2017.
Tanyaş, H., Allstadt, K. E., and van Westen, C. J.: An updated method
for estimating landslide-event magnitude, Earth Surf. Process. Landf.,
43, 1836–1847, https://doi.org/10.1002/esp.4359, 2018.
Tanyaş, H., Görüm, T., Kirschbaum, D., and Lombardo, L.: Could
road constructions be more hazardous than an earthquake in terms of mass
movement?, Nat. Hazards, 112, 639–663,
https://doi.org/10.1007/s11069-021-05199-2, 2022.
Trefon, T.: Congo's Environmental Paradox: potential and predation in a land
of plenty, Zed Books Ltd., London, 194 pp., ISBN 978-1-78360-244-5 hb, 2016.
Tyukavina, A., Hansen, M. C., Potapov, P., Parker, D., Okpa, C., Stehman, S.
V., Kommareddy, I., and Turubanova, S.: Congo Basin forest loss dominated by
increasing smallholder clearing, Sci. Adv., 4, eaat2993,
https://doi.org/10.1126/sciadv.aat2993, 2018.
USGS: EarthExplorer, USGS [data set], https://earthexplorer.usgs.gov/, last access: 2 February 2023.
Van Acker, F.: Where did all the land go? Enclosure – social struggle
in Kivu (D.R.Congo), Rev. Afr. Polit. Econ., 32, 79–98,
https://doi.org/10.1080/03056240500120984, 2005.
Van Den Eeckhaut, M., Poesen, J., Verstraeten, G., Vanacker, V., Moeyersons,
J., Nyssen, J., and van Beek, L. P. H.: The effectiveness of hillshade maps
and expert knowledge in mapping old deep-seated landslides, Geomorphology,
67, 351–363, https://doi.org/10.1016/j.geomorph.2004.11.001, 2005.
Van Den Eeckhaut, M., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten,
G., and Vandekerckhove, L.: Prediction of landslide susceptibility using
rare events logistic regression: A case-study in the Flemish Ardennes
(Belgium), Geomorphology, 76, 392–410,
https://doi.org/10.1016/j.geomorph.2005.12.003, 2006.
Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G., and Demoulin,
A.: Characteristics of the size distribution of recent and historical
landslides in a populated hilly region, Earth Planet. Sci. Lett., 256,
588–603, https://doi.org/10.1016/j.epsl.2007.01.040, 2007.
Vanacker, V., Vanderschaeghe, M., Govers, G., Willems, E., Poesen, J.,
Deckers, J., and De Bievre, B.: Linking hydrological, infinite slope
stability and land-use change models through GIS for assessing the impact of
deforestation on slope stability in high Andean watersheds, Geomorphology,
52, 299–315, https://doi.org/10.1016/S0169-555X(02)00263-5, 2003.
Vanmaercke, M., Ardizzone, F., Rossi, M., and Guzzetti, F.: Exploring the
effects of seismicity on landslides and catchment sediment yield: An Italian
case study, Geomorphology, 278, 171–183,
https://doi.org/10.1016/j.geomorph.2016.11.010, 2017.
Vuillez, C., Tonini, M., Sudmeier-Rieux, K., Devkota, S., Derron, M.-H., and
Jaboyedoff, M.: Land use changes, landslides and roads in the Phewa
Watershed, Western Nepal from 1979 to 2016, Appl. Geogr., 94, 30–40,
https://doi.org/10.1016/j.apgeog.2018.03.003, 2018.
Van de Walle, J., Thiery, W., Brousse, O., Souverijns, N., Demuzere, M., and
van Lipzig, N. P. M.: A convection-permitting model for the Lake Victoria
Basin: evaluation and insight into the mesoscale versus synoptic atmospheric
dynamics, Clim. Dynam., 54, 1779–1799,
https://doi.org/10.1007/s00382-019-05088-2, 2020.
Wassmer, P., Schwartz, D., Gomez, C., Ward, S., and Barrere, P.:
Geomorphology and sedimentary structures of upper pleistocene to holocene
alluvium within the nyabarongo valley (Rwanda). palaeo-climate and
palaeo-environmental implications, Geogr. Fis. Din. Quat., 36, 199–210,
https://doi.org/10.4461/GFDQ.2013.36.17, 2013.
Whipple, K. X.: The influence of climate on the tectonic evolution of
mountain belts, Nat. Geosci., 2, 97–104, https://doi.org/10.1038/ngeo413,
2009.
Whittaker, A. C.: How do landscapes record tectonics and climate?,
Lithosphere, 4, 160–164, https://doi.org/10.1130/RF.L003.1, 2012.
Wilken, F., Fiener, P., Ketterer, M., Meusburger, K., Muhindo, D. I., van
Oost, K., and Doetterl, S.: Assessing soil redistribution of forest and
cropland sites in wet tropical Africa using 239+240Pu fallout
radionuclides, SOIL, 7, 399–414, https://doi.org/10.5194/soil-7-399-2021,
2021.
Short summary
This research highlights the importance of human activities on the occurrence of landslides and the need to consider this context when studying hillslope instability patterns in regions under anthropogenic pressure. Also, this study highlights the importance of considering the timing of landslides and hence the added value of using historical information for compiling an inventory.
This research highlights the importance of human activities on the occurrence of landslides and...
Altmetrics
Final-revised paper
Preprint