Articles | Volume 22, issue 4
https://doi.org/10.5194/nhess-22-1181-2022
https://doi.org/10.5194/nhess-22-1181-2022
Research article
 | 
06 Apr 2022
Research article |  | 06 Apr 2022

Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019

Christos Bountzouklis, Dennis M. Fox, and Elena Di Bernardino

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023,https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023,https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023,https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
A data-driven model for Fennoscandian wildfire danger
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023,https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Equivalent hazard magnitude scale
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022,https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary

Cited articles

Akaike, H.: A new look at the statistical model identification, IEEE Trans. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. 
Alexander, J. D., Seavy, N. E., Ralph, C. J., and Hogoboom, B.: Vegetation and topographical correlates of fire severity from two fires in the Klamath-Siskiyou region of Oregon and California, Int. J. Wildl. Fire, 15, 237–245, https://doi.org/10.1071/WF05053, 2006. 
Badia, A., Serra, P., and Modugno, S.: Identifying dynamics of fire ignition probabilities in two representative Mediterranean wildland-urban interface areas, Appl. Geogr., 31, 930–940, https://doi.org/10.1016/j.apgeog.2011.01.016, 2011. 
Baeza, M. J., De Luís, M., Raventós, J., and Escarré, A.: Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk, J. Environ. Manage., 65, 199–208, https://doi.org/10.1006/jema.2002.0545, 2002. 
Bajocco, S. and Ricotta, C.: Evidence of selective burning in Sardinia (Italy): Which land-cover classes do wildfires prefer?, Landsc. Ecol., 23, 241–248, https://doi.org/10.1007/s10980-007-9176-5, 2008. 
Download
Short summary
The study addresses the evolution of burned areas in southeastern France from 1970 to 2019 through the scope of a firefighting policy shift in 1994 that resulted in a significant decrease in the burned area. Regions with large fires were particularly impacted, whereas, in other areas, the fires remained frequent and occurred closer to built-up zones. Environmental characteristics such as south-facing slopes and low vegetation (bushes) are increasingly associated with burned areas.
Altmetrics
Final-revised paper
Preprint