Articles | Volume 20, issue 12
https://doi.org/10.5194/nhess-20-3343-2020
https://doi.org/10.5194/nhess-20-3343-2020
Research article
 | 
10 Dec 2020
Research article |  | 10 Dec 2020

Experimental assessment of the relationship between rainfall intensity and sinkholes caused by damaged sewer pipes

Tae-Young Kwak, Sang-Inn Woo, Choong-Ki Chung, and Joonyoung Kim

Related authors

GIS-based Real-time Framework of Debris Flow Hazard Assessment for Expressways in Korea
C. K. Chung, H. S. Kim, S. R. Kim, and K. S. Kim
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-2,https://doi.org/10.5194/nhess-2016-2, 2016
Revised manuscript not accepted
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024,https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024,https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary

Cited articles

Adrian, R. J.: Particle-Imaging Techniques for Experimental Fluid Mechanics, Annu. Rev. Fluid Mech., 23, 261–304, https://doi.org/10.1146/annurev.fl.23.010191.001401, 1991. 
Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Yekutieli, D., Colacino, M., Diodato, L., Ramis, C., Homar, V., Romero, R., Michaelides, S. and Manes, A.: The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values, Geophys. Res. Lett., 29, 29–32, https://doi.org/10.1029/2001GL013554, 2002. 
Alshibli, K. A. and Akbas, I. S.: Strain Localization in Clay: Plane Strain versus Triaxial Loading Conditions, Geotech. Geol. Eng., 25, 45–55, https://doi.org/10.1007/s10706-006-0005-4, 2007. 
Alshibli, K. A. and Sture, S.: Sand Shear Band Thickness Measurements by Digital Imaging Techniques, J. Comput. Civ. Eng., 13, 103–109, https://doi.org/10.1061/(ASCE)0887-3801(1999)13:2(103), 1999. 
Bae, Y., Shin, S., Won, J., and Lee, D.: The Road Subsidence Conditions and Safety Improvment Plans in Seoul, Seoul, 60 pp., 2016. 
Download
Short summary
In this study, model tests were used to analyze the effects of rainfall intensity on the formation of the eroded zone and the occurrence of sinkholes due to groundwater infiltration through pipe defects. The model tests were conducted to simulate the actual site conditions considering the soil used around sewer pipe networks and the sewer pipe landfill standards. The groundwater level was applied to the model tests by setting three hydraulic heads based on heavy-rainfall characteristics.
Altmetrics
Final-revised paper
Preprint