Articles | Volume 20, issue 4
https://doi.org/10.5194/nhess-20-1123-2020
https://doi.org/10.5194/nhess-20-1123-2020
Research article
 | 
27 Apr 2020
Research article |  | 27 Apr 2020

Evaluation of Global Fire Weather Database reanalysis and short-term forecast products

Robert D. Field

Related authors

A new snow module improves predictions of the isotope-enabled MAIDENiso forest growth model
Ignacio Hermoso de Mendoza, Etienne Boucher, Fabio Gennaretti, Aliénor Lavergne, Robert Field, and Laia Andreu-Hayles
Geosci. Model Dev., 15, 1931–1952, https://doi.org/10.5194/gmd-15-1931-2022,https://doi.org/10.5194/gmd-15-1931-2022, 2022
Short summary
Changes in satellite retrievals of atmospheric composition over eastern China during the 2020 COVID-19 lockdowns
Robert D. Field, Jonathan E. Hickman, Igor V. Geogdzhayev, Kostas Tsigaridis, and Susanne E. Bauer
Atmos. Chem. Phys., 21, 18333–18350, https://doi.org/10.5194/acp-21-18333-2021,https://doi.org/10.5194/acp-21-18333-2021, 2021
Short summary
The impacts of recent drought on fire, forest loss, and regional smoke emissions in lowland Bolivia
Joshua P. Heyer, Mitchell J. Power, Robert D. Field, and Margreet J. E. van Marle
Biogeosciences, 15, 4317–4331, https://doi.org/10.5194/bg-15-4317-2018,https://doi.org/10.5194/bg-15-4317-2018, 2018
Short summary
Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015)
Margreet J. E. van Marle, Silvia Kloster, Brian I. Magi, Jennifer R. Marlon, Anne-Laure Daniau, Robert D. Field, Almut Arneth, Matthew Forrest, Stijn Hantson, Natalie M. Kehrwald, Wolfgang Knorr, Gitta Lasslop, Fang Li, Stéphane Mangeon, Chao Yue, Johannes W. Kaiser, and Guido R. van der Werf
Geosci. Model Dev., 10, 3329–3357, https://doi.org/10.5194/gmd-10-3329-2017,https://doi.org/10.5194/gmd-10-3329-2017, 2017
Short summary
Development of a Global Fire Weather Database
R. D. Field, A. C. Spessa, N. A. Aziz, A. Camia, A. Cantin, R. Carr, W. J. de Groot, A. J. Dowdy, M. D. Flannigan, K. Manomaiphiboon, F. Pappenberger, V. Tanpipat, and X. Wang
Nat. Hazards Earth Syst. Sci., 15, 1407–1423, https://doi.org/10.5194/nhess-15-1407-2015,https://doi.org/10.5194/nhess-15-1407-2015, 2015
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023,https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023,https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023,https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
A data-driven model for Fennoscandian wildfire danger
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023,https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Equivalent hazard magnitude scale
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022,https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary

Cited articles

Abatzoglou, J. T., Williams, A. P., Boschetti, L., Zubkova, M., and Kolden, C. A.: Global patterns of interannual climate-fire relationships, Glob. Change Biol., 24, 5164–5175, https://doi.org/10.1111/gcb.14405, 2018. 
Alexander, M. E. and de Groot, W. J.: Fire behavior in jack pine stands as related to the Canadian Forest Fire Weather Index (FWI) System, Canadian Forestry Service, Northwest Region, Edmonton, Canada, 1988. 
Arino, O., Perez, R., Julio, J., Kalogirou, V., Bontemps, S., Defourny, P., and Van Bogaert, E.: Global Land Cover Map for 2009 (GlobCover 2009), European Space Agency (ESA) & Universite catholique de Louvain (UCL), PANGAEA, https://doi.org/10.1594/PANGAEA.787668, 2012. 
Bedia, J., Herrera, S., Gutiérrez, J. M., Zavala, G., Urbieta, I. R., and Moreno, J. M.: Sensitivity of fire weather index to different reanalysis products in the Iberian Peninsula, Nat. Hazards Earth Syst. Sci., 12, 699–708, https://doi.org/10.5194/nhess-12-699-2012, 2012. 
Bedia, J., Golding, N., Casanueva, A., Iturbide, M., Buontempo, C., and Gutiérrez, J. M.: Seasonal predictions of Fire Weather Index: Paving the way for their operational applicability in Mediterranean Europe, Climate Services, 9, 101–110, https://doi.org/10.1016/j.cliser.2017.04.001, 2018. 
Short summary
This paper compares fire weather indices calculated from the NASA MERRA-2 reanlaysis to those calculated from a global network of weather stations, finding that, globally, biases in reanalysis fire weather are influenced firstly by temperature and relative humidity and, in certain regions, by precipitation biases. Fire weather forecasts using short-term NASA GEOS-5 weather forecasts are skillful 2 d ahead of time. This skill decreases more quickly with longer lead times at high latitudes.
Altmetrics
Final-revised paper
Preprint