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Abstract. Daily Fire Weather Index (FWI) System compo-
nents calculated from the NASA Modern-Era Retrospective
analysis for Research and Applications, Version 2 (MERRA-
2), are compared to FWI calculations from a global network
of weather stations over 2004–2018, and short-term, experi-
mental (8 d) daily FWI forecasts are evaluated for their skill
across the Terrestrial Ecoregions of the World for 2018. FWI
components from MERRA-2 were, in general, biased low
compared to station data, but this reflects a mix of coher-
ent low and high biases of different magnitudes. Biases in
different MERRA-2 FWI components were related to differ-
ent biases in weather input variables for different regions, but
temperature and relative humidity biases were the most im-
portant overall. FWI forecasts had high skill for 1–2 d lead
times for most of the world. For longer lead times, forecast
skill decreased most quickly at high latitudes and was most
closely related to decreasing skill of relative humidity fore-
casts. These results provide a baseline for the evaluation and
use of fire weather products calculated from global analysis
and forecast fields.

1 Introduction

The Fire Weather Index (FWI) System is the most commonly
used fire danger rating system around the world (de Groot
and Flannigan, 2014; de Groot et al., 2015). It is composed
of three moisture codes that track the moisture content of lit-
ter and forest floor moisture content and three fire behavior
indices which capture potential fire spread, fuel consump-
tion and intensity. All codes and indices are relative (unit-
less) measures and are interpreted differently in different fire

environments. FWI calculations require 12:00 local time 2 m
temperature and relative humidity, 10 m wind speed, and 24 h
precipitation. Snow depth is also needed in cold regions to
start and stop the FWI calculations. Because each day’s cal-
culation requires the previous day’s moisture codes, weather
records must be continuous and any missing data must be es-
timated (Lawson and Armitage, 2008; Taylor and Alexander,
2006). Too many missing weather data can lead to errors that
accumulate over time.

The Fine Fuel Moisture Code (FFMC) captures changes in
the moisture content of fine fuels and leaf litter on the forest
floor, where fires can most easily start, and is calculated using
temperature, relative humidity, precipitation and wind speed
as inputs. The Duff Moisture Code (DMC) captures the mois-
ture content of loosely compacted forest floor organic matter
and the moisture content of dead, medium-sized fuels on the
forest floor. The DMC is calculated from temperature, rela-
tive humidity and precipitation. The Drought Code (DC) cap-
tures the moisture content of deep, compacted organic soils
and heavy surface fuels and is calculated from temperature
and precipitation. The three moisture codes are calculated on
a daily basis using the previous day’s moisture codes and the
current day’s weather. Each has a precipitation threshold be-
low which small amounts of precipitation have no effect on
the code, which are 0.5 mm for the FFMC, 1.5 mm for the
DMC and 2.8 mm for the DC. The three fire behavior indices
reflect the behavior of a fire if it were to start. The Initial
Spread Index (ISI) is driven by wind speed and FFMC and
represents the ability of a fire to spread immediately after ig-
nition. The Buildup Index (BUI) is calculated from the DMC
and DC and represents the total fuel available to burn. The
Fire Weather Index (FWI) combines the ISI and BUI to pro-
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vide an overall measure of fire danger. For all moisture codes
and fire behavior indices, increasing values indicate decreas-
ing moisture content. Technical details of the FWI System
can be found in various technical reports (Dowdy et al., 2009;
Van Wagner, 1987), and the equation source code can be ac-
cessed through publicly available repositories (Wang et al.,
2017).

A representative set of FWI adaptation approaches for dif-
ferent fire environments is listed in Table 1. When introduced
into a new region, the FWI System is calibrated for local
conditions, usually with the FWI calculated from weather
station data, but assembling the continuous hourly weather
records needed for FWI calculations can be hard. To that
end, the Global Fire Weather Database (GFWED) provides
different global FWI datasets using a combination of meteo-
rological reanalysis and forecasts and precipitation estimates
from rain gauges and satellites. The first iteration of GFWED
was based on the original NASA Modern-Era Retrospective
analysis for Research and Applications (MERRA) reanalysis
(Rienecker et al., 2011), with two alternative versions sub-
stituting reanalysis precipitation for two gridded rain-gauge
products (Sheffield et al., 2006; Chen et al., 2008). These
three versions were evaluated by examining differences only
between the Drought Code computed from weather stations
and that from gridded meteorological products for a small
number of weather stations in representative fire environ-
ments (Field et al., 2015).

Since then, a number of different versions have been
added. The current “historical” versions are based on
MERRA-2 (Gelaro et al., 2017), which has provided data
since 1980 and has replaced MERRA. For the purposes
of FWI calculations, the main changes in MERRA-2 from
MERRA are precipitation related. As described in Gelaro
et al. (2017), these include changes to condensate re-
evaporation processes and to the deep convection parame-
terization in the underlying model, assimilation of additional
microwave and infrared radiances from satellite along with
the omission of others to which precipitation was too sen-
sitive, and separate constraints in the analysis adjustments
on conversation of total dry atmospheric mass and total
changes in atmospheric water being equal to the net source of
water from precipitation and surface evaporation. Globally,
MERRA-2 has a high precipitation bias relative to GPCP
(similar to other reanalysis) but is improved from MERRA
in that an apparently spurious increase from 2000 to 2010 is
now absent. During boreal summer, there is an increase in the
positive precipitation bias over northern Canada and north-
ern Eurasia. A strong negative precipitation bias in MERRA-
2 over much of South America has been reduced, and re-
gional positive and negative biases over Africa are similar.
For the US during the summer, where more detailed evalua-
tion has been done, there is improvement in MERRA-2 pri-
marily in the interannual variability in regional precipitation
and in high rainfall events compared to MERRA.

There are also near-real-time 8 d FWI forecasts using
weather inputs from the NASA Goddard Earth Observing
System, Version 5 (GEOS-5; Rienecker et al., 2008; Molod
et al., 2015), which is also the numerical weather predic-
tion model underlying MERRA-2. For both the MERRA-
2 reanalysis and GEOS-5 near-real-time products, there are
alternative precipitation versions that have used the Global
Precipitation Climatology Project One-Degree Daily prod-
uct (Huffman et al., 2001) since 1997, the Tropical Rainfall
Measuring Mission (TRMM; Huffman et al., 2017) Multi-
satellite Precipitation Analysis (TMPA) 3B42 daily prod-
uct over 1998–2015 and the Integrated Multi-satellitE Re-
trievals for Global Precipitation Measurement (IMERG) mis-
sion (Hou et al., 2014; Skofronick-Jackson et al., 2017) prod-
ucts since mid-2014. The time periods, coverage and resolu-
tion of all products are summarized at https://data.giss.nasa.
gov/impacts/gfwed/ (last access: 16 February 2020).

A comparison of FWI calculated from MERRA-2, rain
gauge and satellite precipitation estimates was completed for
a series of recent fire seasons in Canada, Chile, Greece and
Indonesia (Field, 2020). The focus of this paper is strictly on
the evaluation of the MERRA-2 reanalysis globally and over
a longer period and of the GEOS-5 8 d forecast FWI for a sin-
gle year. The first goal is to compare all FWI System compo-
nents (and not only the DC) calculated over a global weather
station network to FWI fields calculated from MERRA-2 and
to understand how biases in the MERRA-2 FWI are related to
biases in different weather inputs. This follows comparisons
of the FWI computed from Weather Research and Forecast-
ing (WRF) high-resolution analysis fields to station data over
New Zealand (Simpson et al., 2014) and the McArthur Forest
Fire Danger Index over Australia (Clarke et al., 2013), com-
parisons of the FWI computed from station data and three
reanalyses over the Iberian Peninsula (Bedia et al., 2012),
comparisons of the FWI computed from station data to high-
resolution analyses over the US Great Lakes region (Horel et
al., 2014), and the first global comparison of the FWI com-
puted from station data to ERA-Interim reanalyses (Vitolo et
al., 2019).

The second goal is to evaluate the skill of experimen-
tal, short-term (8 d) FWI System forecasts computed from
NASA GEOS-5 weather forecasts. The basic question here is
as follows: over different regions, how does fire weather fore-
cast skill deteriorate at lead times of up to 8 d? This follows
previous work to evaluate the FWI from analyses for pre-
dicting global burned area (Di Giuseppe et al., 2016), smoke
emissions for chemical weather forecasting for 3 months in
2013 (Di Giuseppe et al., 2018) and 5 months in 2015 (Di
Giuseppe et al., 2017), 5 d WRF forecasts of FWI and Na-
tional Fire Danger Rating System components over Alaska
in 2005 (Mölders, 2010), and 24 and 48 h FWI forecasts over
the US Great Lakes region (Horel et al., 2014) for April to
September 2012. The evaluation here is limited to the skill of
the GEOS-5 FWI forecasts compared to FWI analyses and
not their skill in predicting fire activity or behavior.
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Table 1. Examples of FWI calibration and adaptation studies for different fire environments around the world.

Region Weather
data

Indices Approach Reference

Alberta,
Canada

On-site
measure-
ments

FWI Experimental fire behavior examples for different FWI
values in a reference jack pine fuel type in relation to
fire intensity and suppression difficulty.

Alexander and de
Groot (1988)

Canadian
provinces

Weather
stations

FWI, FWI,
BUI for
BC

Cumulative FWI frequency distributions, relationships
between the FWI, number of fires and burned area from
reports, expert assessment.

Stocks et al. (1989)

Northeastern
China

Weather
stations

All Cumulative FWI frequency distributions, number of
fires and burned area across fire danger classes, rela-
tionships between FWI values, number of fires and area
burned.

Tian et al. (2011)

Southwestern
Slovenia

Weather
stations

FWI Cumulative FWI frequency distributions, number of
fires and burned area across fire danger classes, logis-
tic regression between FWI indices and days with fire.

Sturm et al. (2012)

Districts in
Portugal

Weather
stations

FFMC,
DC, ISI,
FWI

Cumulative FWI frequency distributions, relationships
between FFMC and moisture content of dead eucalyp-
tus leaves, ISI and spread rate in shrub vegetation, DC
and live moisture content of shrubs, DC and total annual
June–September area burned.

Fujioka et al. (2009),
translated from
Viegas et al. (2004)

Portugal Weather
stations

FWI Estimated fireline intensity and difficulty of suppression
for maritime pine stands in Portugal using experimental
fires and wildfires, simulated fire spread rates.

Palheiro et al. (2006)

Crete,
Greece

Single
weather
station

FFMC,
DMC, FWI

Cumulative FWI frequency distributions, sub-index
correlations with number of fires and burned areas from
fire reports, relationships between FFMC and sampled
fine fuel moisture content, DMC and sampled duff
moisture content.

Dimitrakopoulos et
al. (2011)

Patagonia,
Argentina

Weather
stations

FFMC Relationships between FFMC and laboratory ignitions
and moisture content for cypress and shrub litter.

Bianchi and Defosse
(2014)

United
Kingdom

Weather
stations
and NWP
analysis

All Cumulative FWI frequency distributions relative to
fire occurrence, emphasizing percentile-based classifi-
cation, possible utility of absolute FFMC values.

de Jong et al. (2016)

Indonesia
and
Malaysia

Weather
stations

FFMC,
DC, ISI

Grass fuel ignition tests, satellite active fires, airport vis-
ibility as an indicator of severe haze.

de Groot et al. (2007)

General ERA-
Interim
reanalysis

FWI General fire weather index calibration software, re-
gional European examples provided for satellite-based
burned area.

Vitolo et al. (2018)

2 Data and methods

FWI fields are computed from NASA MERRA-2 reanalysis
and GEOS-5 forecasts using the same approach described
in Field et al. (2015). The exception is that unvegetated ar-
eas have been masked out using the GlobCover 2009 land
cover classification (Arino et al., 2012) rather than annual
mean temperature and precipitation thresholds. Weather sta-

tion data were obtained from the National Oceanographic
and Atmospheric Administration’s National Center for Envi-
ronmental Information (NCEI) Integrated Surface Database
(ISD) of hourly and synoptic-frequency weather data (Smith
et al., 2011). As of 2019, there are 29 780 uniquely identi-
fied stations in the ISD, but many have long periods of miss-
ing data or report only for a short time. To strike a balance
between data completeness and coverage, stations were se-
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lected that had at least 90 hourly observations for least 90 %
of months over 2004–2018. This initial filter only considers
monthly observation counts and not their diurnal represen-
tativeness, whether the individual FWI weather input values
are reported or whether those values passed NCEI quality
control.

Hourly weather values were interpolated linearly from
synoptic values after excluding observations flagged by the
NCEI as suspect or erroneous; 12:00 LT values were ex-
tracted from the interpolated hourly data with the require-
ment that there be actual observations within 3 h before and
3 h after 12:00 LT so that 12:00 LT estimates were not overly
influenced by observations too early or too late in the day.
Precipitation was totalled from 6, 12, 18 and 24 h reports.
Snow depth from ISD reports was supplemented with data
from the Global Historical Climatology Network (GHCN).
For many stations, snow depth from ISD and GHCN is
missing during the summer rather than reported as 0. Non-
reported snow during summer was distinguished from sta-
tions where no snow occurs using the daily Aqua MODIS
snow cover fraction MYD10C1 product (Hall and Riggs,
2016). Remaining missing temperature, relative humidity
and wind-speed values for FWI calculations were sampled
from MERRA-2 fields at each station’s location for the sake
of continuing calculations. Missing 24 h precipitation was
taken from the Climate Prediction Center (CPC) gridded
daily precipitation estimate (Chen et al., 2008). No bias cor-
rection was applied to these filled weather input values, but
there was a further requirement that FWI component values
for a given day were only included in calculating bias and
correlations with the MERRA-2 and station FWI if RH (and
therefore T also) were filled from MERRA-2 for no more
than 20 % of days during the previous 60 d.

Station-based calculations were again filtered for com-
pleteness, with the requirement that at least 80 % of tem-
perature, relative humidity and wind-speed values be from
observations rather than sampled from MERRA-2 and that
50 % of precipitation values be from observations rather than
CPC, following filtering for the AgMERRA product (Ruane
et al., 2014). After this requirement, there were 1746 sta-
tions (Fig. 1), shown with the standard Global Fire Emissions
Database (GFED; van der Werf et al., 2017) regions used
for regional analyses. Stations are colored by the starting
month of their fire season, defined as the 4-month period with
the highest average FWI. Coverage was best over the south-
ern Canadian part of boreal North America (BONA), tem-
perate North America (TENA), Europe (EURO), the central
Siberian part of boreal Asia (BOAS), Japan and the southern
China regions of central Asia (CEAS), and coastal Australia
(AUST). Coverage was reasonable over central America, ex-
cept for northern central Mexico, and the Malaysian and
western Indonesian part of equatorial Asia (EQAS). Cover-
age was otherwise poor, notably over the fire-prone regions
of South America (SAM) such as the Mato Grosso of Brazil,

all of Africa (AFR), southeastern Asia (SEAS) except for
Thailand, central Asia, and western Russia.

Eight-day FWI forecasts calculated from GEOS-5 weather
forecasts were evaluated for 2018, the first full year for which
forecasts were produced. Forecasts were analyzed over the
same Terrestrial Ecoregions of the World boundaries (Ol-
son et al., 2001) as the fire–climate analysis of Abatzoglou
et al. (2018) rather than GFED regions, which were judged
to be too big, or state or provincial boundaries, which were
judged to be too small. The forecasts at each lead time were
compared to the GEOS-5 FWI analysis fields (i.e., 0 d lead
time fields from the data assimilation system, which are ob-
servationally constrained) rather than to the FWI calculated
from weather stations because of the low weather station den-
sity over many fire-prone regions of the world.

3 Results

3.1 MERRA-2 and station FWI comparison over
2004–2018

3.1.1 Examples for Canada and Spain

To illustrate differences between the station and MERRA-
2-based weather inputs and FWI System component values,
two examples of daily data are provided for weather stations
in different fire environments during which there were sig-
nificant fire events and in countries where the FWI System is
used operationally.

Figure 2 shows the daily 12:00 LT 2 m temperature
(TEMP) and relative humidity (RH), 10 m wind speed (WD-
SPD), 24 h precipitation (PREC), and the individual FWI
component values for Ft. McMurray, Alberta, in western
Canada for 2016. The Ft. McMurray wildfire of May 2016
destroyed over 3000 structures in the city of Ft. McMur-
ray and led to the largest evacuation in Canadian history.
Station-based FWI calculations began in mid-April after the
snowmelt, which was followed by warming and drying con-
ditions through end of the month. The fire was first detected
on 1 May, when the FWI was 28, which would be classi-
fied as very high in Alberta (Stocks et al., 1989), and until
8 May varied between 40 to 46, which would be classified
as extreme. These conditions were driven by an absence of
rain during the prior 2 weeks and low (< 30 %) RH. The
MERRA-2-based FWI only marginally captured the extreme
fire weather conditions, due primarily to a combination of
snowmelt that is too high, RH that is too high during May
and wind speeds that are too low.

Figure 3 shows the daily weather and FWI values for
Vigo in northwestern Spain over 2017. Beginning in April,
the station-based DMC increased over the summer, punctu-
ated by periodic decreases associated with small rain events.
The DC increased more steadily due to it being less sensi-
tive to small amounts of rain. By October, BUI values ex-
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Figure 1. National Centers for Environmental Information (NCEI) Integrated Surface Database (ISD) stations with at least 80 % completeness
of 12:00 LT observations of 2 m temperature (TEMP) and 2 m relative humidity (RH) and 50 % completeness of daily total precipitation
(PREC) over 2004–2018. Stations are colored by the starting month of their 4-month peak fire weather season. Global Fire Emissions
Database (GFED; van der Werf et al., 2017) regions are indicated by the labels and shading. The region definitions are boreal North America
(BONA), temperate North America (TENA), central America (CEAM), South America, combined GFED Northern and Southern Hemisphere
South America (SAM), combined GFED Northern and Southern Hemisphere Africa (AFR), Europe (EURO), boreal Asia (BOAS), central
Asia (CEAS), southeastern Asia (SEAS), equatorial Asia (EQAS), and Australia and New Zealand (AUST). The GFED Middle East region
was excluded due to a lack of weather stations.

ceeded 100, which would represent low fuel moisture con-
tent in heavy and medium-sized dead fuels and a very dry
landscape. The severe burning on 15 October was associated
with an FWI of 72 for the weather station data and 50 from
MERRA-2, which would be classified as extreme in south-
ern Europe (Palheiro et al., 2006; San-Miguel-Ayanz et al.,
2013). The MERRA-2-based calculations for Vigo captured
the progression of seasonal fire weather much better than for
Ft. McMurray.

3.1.2 Global FWI means and biases

Figure 4 shows the mean values for each of the six FWI
components calculated from ISD stations with sufficiently
complete data over 2004–2018, calculated only over the lo-
cal 4-month fire season beginning on the month shown in
Fig. 1. The FFMC (Fig. 4a) generally has a mean FFMC
greater than 75, with higher values seen over the western US,
southern Europe, southwestern Siberia, Thailand and most of
Australia. Lower mean values are seen over the western and
eastern Canadian coasts, the UK, northern Europe, southern
China, and the Maritime Continent. The DMC (Fig. 4b) mean
values range from below 50 across most of Canada, the east-
ern US, northern and central Europe, Siberia, China, and the
southeastern coast of Australia to above 300 over the western
US and northern Australia. Patterns in the mean DC (Fig. 4c)
follow those of the DMC, but with a maximum of 1000 over
the southwestern US, southern Spain and parts of Australia.
The BUI (Fig. 4e) has the same pattern as the DMC and DC
but with a range of up to 350. The patterns of the ISI (Fig. 4d)
and FWI (Fig. 4f) follow those of the other indices, with max-
imum means of 25 and 60, respectively.

Figure 5 shows the bias of MERRA-2 FWI components
relative to the station data over the local 4-month fire season,
and Fig. 6 shows the bias of the input weather variables. The
FFMC (Fig. 5a) had a median bias of −0.2 over all stations.
This was a mix of the coherent low biases over the most of
Canada, central America, northern Eurasia, the western Mar-
itime Continent and coastal Australia, with weak positive bi-
ases over the Canadian Prairies and central Europe. Qual-
itatively, the spatial patterns in FFMC reflect the biases in
TEMP (Fig. 6a) and RH (Fig. 6b). The median DMC bias
was −6.1 (Fig. 5b), which reflected strong negative biases
over western North America and northern Australia, with no
comparable regions of coherent high bias and no clear rela-
tionship to the patterns in the individual input variables. The
DC (Fig. 5c) had a median bias of−54.7, with strong low bi-
ases over the western US and the Australian interior, coherent
but weaker low biases over Canada and most of Eurasia, and
a slight but coherent high bias over the southeastern US and
southwestern Australia. Like the DMC, there was no clear as-
sociation between DC biases and either the TEMP or PREC
biases, but the low biases over the western US were consis-
tent with too much snow (Fig. 6e) and a shorter period of
active FWI calculations (Fig. 6f). The ISI (Fig. 5d) is mostly
biased low and most strongly over the western US. There
are areas of high ISI bias in central Canada, Spain, central
Europe, Thailand, and southwestern and northern Australia.
The patterns in ISI bias weakly reflect those of the WDSPD
(Fig. 6c). The bias pattern in BUI (Fig. 5e) is nearly identi-
cal to that of the DMC and that of the FWI (Fig. 5f) to the
ISI. Maps of relative rather than absolute biases tended to
minimize the dominance of biases in regions with high mean
FWI component values (e.g., the western US and northern
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Figure 2. Daily weather input and FWI System component values for Ft. McMurray, Alberta, Canada (WMO ID 715850, WBAN 99999;
56.65◦ N, 111.22◦W) for 2016.
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Figure 3. Same as Fig. 2 but for Vigo in northwestern Spain (WMO ID 080450, WBAN 99999; 42.232◦ N, 8.627◦W) during 2017.
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Figure 4. 2004–2018 mean of Fire Weather Index (FWI) components calculated from weather station data, only over the local 4-month fire
season.

Australia), making biases in either direction in other regions
more apparent.

To quantify the relationship between MERRA-2 FWI
component biases and those of the input weather variables,
Table 2 summarizes weather and FWI means for weather sta-
tions, MERRA-2 biases, and the correlations between FWI
component biases from Fig. 5 and weather input biases from
Fig. 6. SNOWD is the percentage of days with snow on the
ground, and FIRESEASON is the percentage of days during
which the FWI calculations are active. Globally, MERRA-
2 has a −0.3 ◦C temperature bias, a −0.6 % RH bias, a
−0.2 km h−1 wind-speed bias, a 0.6 mm d−1 precipitation
bias, 7.8 % too many days with snow and a 4.5 % shorter
fire season. To identify which individual weather bias might
most influence FWI component biases, the interior values of
Table 2 (in italics) show the correlations between biases in
weather and biases in FWI components across stations. Bi-
ases in the FFMC are positively related to biases in TEMP
(r = 0.73), negatively related to biases in RH (r =−0.72)
and slightly related to PREC biases (r =−0.50), with lit-
tle relation (r = 0.17) to WDSPD biases. Globally, biases in
the DC, DMC and BUI are not strongly related to biases in
any individual weather input. Biases in the ISI are moder-
ately related (r = 0.56) to biases in the wind speed, with a

slight negative relationship (r =−0.47) with RH. Biases in
the FWI component are most strongly related to TEMP, RH
and WDSPD through the intermediate biases of the FFMC
and the ISI.

Globally averaged FWI and biases obscure considerable
regional variation in weather and FWI biases and relation-
ships to biases in the weather inputs because of the large
variation in mean FWI component values between, for ex-
ample, arid and tropical fire environments. The same statis-
tics shown in Table 3 were calculated across stations for
each of the GFED regions. Table 3 shows the mean sta-
tion weather and FWI values, MERRA-2 biases and bias
correlations for the BONA, TENA, CEAM and SAM re-
gions. Over BONA, the relationships between FFMC biases
and weather biases were consistent with the global relation-
ships but stronger (r = 0.82 for TEMP, r =−0.81 for RH,
r =−0.59 for PREC). Biases in the DMC and BUI were re-
lated to biases in TEMP, and the DC biases were related to
biases in TEMP and PREC (r =−0.66). ISI biases were re-
lated to biases in TEMP and RH via the FFMC and to biases
in WDSPD (r = 0.67). Biases in the FWI were most strongly
related to temperature biases (r = 0.76) via the individual
sub-components and also to RH and WDSPD. It should be
noted that the agricultural regions of the Canadian Prairies
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Figure 5. 2004–2018 bias between Fire Weather Index (FWI) components calculated from MERRA-2 and from weather stations, only over
the local 4-month fire season.

Table 2. Weather input and FWI statistics for 1746 weather stations and MERRA-2 reanalysis fields sampled at station locations for 2004–
2018. The first row in the table is the mean for each weather input from the weather station data (STN MEAN is station mean), and the
second row is the mean MERRA-2 bias relative to the station data. The first column is the mean FWI value across weather stations, and the
second column is the mean MERRA-2 bias relative to the station data. The interior table entries in italics are the correlations (for p < 0.05
only) between the FWI component biases and the weather input biases across stations. Means and biases at each station are calculated only
over the local 4-month fire season. SNOWD is the percentage of days with snow on the ground, and FIRESEASON is the percentage of days
during which the FWI calculations are active.

TEMP RH WDSPD PREC SNOWD FIRESEASON
(◦C) (%) (km h−1) (mm d−1) (%) (%)

Global n= 1746 STN MEAN 23.6 52 14.3 2.3 17 76.8
STN MEAN MERRA-2 bias −0.3 −0.6 −0.7 0.5 7.8 −4.5

FFMC 80.3 −1.3 0.73 −0.72 0.17 −0.50 0.20
DMC 67.3 −12.7 0.39 −0.32 −0.14 0.15
DC 353 −64.3 0.30 −0.12 0.05 −0.37 −0.13 0.25
ISI 8 −0.8 0.41 −0.47 0.56 −0.12 −0.11 0.17
BUI 83.7 −15.3 0.41 −0.30 0.05 −0.20 0.18
FWI 19.7 −2.2 0.57 −0.60 0.46 −0.24 −0.13 0.23

are overrepresented in these estimates, and the wildfire-prone
areas of northern Canada are underrepresented. Over TENA,
the FWI components were also biased low, reflecting strong
biases in the west compared to the east. The weather bias in-
fluence on FWI component biases was generally weaker than
BONA, aside from a strong influence of RH bias (r =−0.83)

on the FFMC. Biases in the FWI were most strongly (r =
0.63) related to TEMP. There was a weak (r = 0.46) rela-
tionship between DC biases and FIRESEASON, suggesting
that too late a start in the DC calculations led to less “drought
accumulation” over the fire season, particularly in the west-
ern US.
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Figure 6. Same as Fig. 5 but for weather input variables. SNOWD (e) is expressed as the difference between MERRA-2 and the station
data in the percentage of days during the year when snow depth is greater than 1 cm, the threshold below which FWI calculations are active.
FIRESEASON (f) is expressed as the difference between MERRA-2 and the station data in the percentage of days during the year when FWI
calculations are active.

CEAM FFMC biases were most strongly related to PREC
(r =−0.84) and RH (r =−0.68), which translated into a
strong bias relationship in the FWI for the RH (r =−0.82).
The DMC, DC and BUI were biased low, but with only a
weak (r =−0.52) influence from PREC biases, and no rela-
tionship to TEMP biases, due to less variation during the fire
season. SAM biases were harder to quantify because of poor
station coverage. Across the 21 stations that were available,
there were strong low biases in all FWI components, which
had similar relationships to weather input biases to CEAM.
SNOWD and FIRESEASON were related to the DMC, DC
and BUI, but this was due to a single outlying station at the
Santiago airport in Chile (WMO ID 855740).

Table 4 shows mean and bias statistics for AFR, EURO,
BOAS and CEAS. Like SAM, there were very few (n= 10)
stations over AFR. All FWI components were biased low,
with FFMC and DC biases related to PREC biases and DMC,
ISI and FWI most strongly related to RH biases, but with
too few stations for these relationships to be considered ro-
bust. EURO had good station coverage, spanning the differ-
ent fire environments of the Mediterranean to Scandinavia.
FWI component biases were negative but lower in magni-

tude than globally. FFMC biases were strongly related to
TEMP (r = 0.78), RH (r =−0.80) and PREC (r =−0.71)
and weakly related to FIRESEASON (r = 0.55). There were
moderate TEMP (r = 0.51) and RH (r =−0.54) relation-
ships with the DMC and also between PREC biases and DC
biases (r =−0.66) and with a weak (r = 0.43) relationship
to FIRESEASON. FWI biases were more strongly related to
RH biases (r =−0.70) than to TEMP (r = 0.57) and PREC
(r =−0.52) biases.

BOAS had low biases across all FWI components but
which were representative almost entirely of Siberia. FFMC
biases were similarly related to EURO for biases in TEMP
(r = 0.75), RH (r =−0.86) and PREC (r =−0.74) and with
no strong snow day or fire season length influence. TEMP,
RH, PREC and FIRESEASON influences on the DMC, DC
and BUI were comparable to EURO, and ISI biases had
strong relationships with RH (r =−0.69) and WDSPD (r =
0.63) biases. The strongest relationships with FWI biases
were for RH biases (r =−0.71), PREC (r =−0.64) and
TEMP (r = 0.64). Stations over CEAS were primarily in
southern China and Japan, and all FWI components were bi-
ased low except for the ISI. The FFMC biases were related
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Table 3. Same as Table 2 but for the BONA, TENA, CEAM and SAM regions.

TEMP RH WDSPD PREC SNOWD FIRESEASON
(◦C) (%) (km h−1) (mm d−1) (%) (%)

BONA n= 267 STN MEAN 19.3 56.4 13.7 2.2 41.2 50.8
STN MEAN MERRA-2 bias −0.6 −0.3 −0.9 0.9 11.4 −6.7

FFMC 75.7 −2.1 0.82 −0.81 0.39 −0.59 −0.15 0.29
DMC 34.9 −11.2 0.68 −0.56 0.23 −0.41 0.26
DC 253.5 −94.1 0.57 −0.37 0.25 −0.66 −0.17 0.34
ISI 5.2 −0.9 0.66 −0.65 0.67 −0.27 −0.16 0.32
BUI 47.3 −15.4 0.68 −0.54 0.23 −0.44 0.30
FWI 12 −3 0.76 −0.70 0.53 −0.35 −0.15 0.35

TENA n= 401 STN MEAN 27.1 47.5 15.3 2.6 9.4 81.8
STN MEAN MERRA-2 bias −0.4 0.4 −2.5 0.1 13.4 −8.7

FFMC 83.3 −0.5 0.74 −0.83 0.33 −0.23
DMC 85 −18 0.53 −0.25 0.12 −0.22 0.25
DC 364 −47 0.41 −0.47 −0.32 0.46
ISI 10.3 −2.2 0.36 −0.30 0.50 −0.14 0.20
BUI 100.5 −18.9 0.53 −0.22 0.12 −0.27 −0.10 0.29
FWI 24 −3.7 0.63 −0.50 0.51 −0.31 −0.21 0.35

CEAM n= 43 STN MEAN 28.7 50.5 13.6 1.2 0 99.2
STN MEAN MERRA-2 bias 0 −8.2 −0.5 1.2 0.3 −0.1

FFMC 86.6 −1 0.44 −0.68 0.42 −0.84
DMC 154.1 −38.7 0.47 −0.52
DC 659.9 −149.6 −0.52
ISI 10.1 0.1 0.48 −0.82 0.57 −0.33
BUI 183 −45.6 0.41 −0.47 −0.35
FWI 30.2 −2 0.52 −0.82 0.50 −0.48

SAM n= 21 STN MEAN 23.3 59.2 16.8 2.9 4.7 93
STN MEAN MERRA-2 bias −0.2 −2.2 −2.4 2.4 3.8 −3.7

FFMC 79.4 −5.5 0.52 −0.58 −0.63
DMC 38.5 −10.5 −0.63 0.72
DC 251 −96 0.64 0.45
ISI 6.9 −1.6 0.45 −0.64 0.58
BUI 51.4 −17.4 −0.70 0.80
FWI 14.6 −3.9 0.54 −0.60 0.45

to TEMP (r = 0.76) and RH (r =−0.72), with no strong re-
lationships for DMC, DC or BUI biases and moderate rela-
tionships for TEMP and RH for both the ISI and FWI.

Over SEAS (Table 5), FWI component biases were more
weakly low compared to other regions and slightly high for
the ISI and FWI but reflect coverage primarily over Thailand,
with scattered stations in Vietnam, Myanmar and Pakistan
and with no coverage over India or Bangladesh. FFMC biases
were related to RH (r =−0.79) and PREC (r = 0.76) biases.
FWI biases were most strongly related to RH (r =−0.76)
and TEMP (r = 0.73) biases. The strong negative relation-
ships between the DMC and BUI with FIRESEASON were
due to outlier values for four stations over Pakistan and are
not likely robust. Indeed, when these stations were excluded
from the analysis, the DMC and BUI correlations with FIRE-
SEASON were reduced to r =−0.26 and r =−0.22, re-
spectively. Over the tropical EQAS region, low mean FWI

values reflect tropical conditions, for which MERRA-2 FWI
component values were further biased low. Bias relation-
ships were generally weaker than over SEAS, with RH bi-
ases having the strongest relationships to FFMC (r =−0.63)
and ISI (r =−0.62) biases and DC biases being moderately
(r =−0.59) related to PREC biases. Overall, the weak bias
relationships reflect little spatial variation in the average FWI
component values.

AUST had good station coverage, showing high average
FWI values in the interior and western coast and the lower
average values along the other coasts, Tasmania and New
Zealand. Mean biases in FWI components were negative ex-
cept for the FFMC but smaller in magnitude than other re-
gions due to smaller biases in the weather inputs. FFMC
biases were strongly related to TEMP (r = 0.90) and RH
(r =−0.82) biases. The strongest relationships with the FWI
were with biases in TEMP (r = 0.60) and RH (r =−0.59).
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Table 4. Same as Table 2 but for the AFR, EURO, BOAS and CEAS regions.

TEMP RH WDSPD PREC SNOWD FIRESEASON
(◦C) (%) (km h−1) (mm d−1) (%) (%)

AFR n= 10 STN MEAN 28.6 67 10.2 2.4 0 98.8
STN MEAN MERRA-2 bias −1.5 −0.1 −1.2 1.1 0 0.7

FFMC 79.7 −6.8 −0.88
DMC 40.3 −18.4 −0.67
DC 329.3 −93.5 −0.91
ISI 3.8 −1.6 0.77 −0.82 0.72
BUI 57.5 −25.7
FWI 10.6 −5.3 0.63 −0.79

EURO n= 228 STN MEAN 21.4 57.6 14.6 1.9 17.4 74.5
STN MEAN MERRA-2 bias 0 −2.1 −0.2 0.3 7.9 −4.5

FFMC 77.9 −0.5 0.78 −0.80 −0.71 −0.40 0.55
DMC 58.5 −3.8 0.51 −0.54 −0.33 0.19
DC 357.8 −37.8 0.53 −0.43 −0.66 −0.28 0.43
ISI 5.6 −0.2 0.45 −0.58 0.44 −0.45 0.16
BUI 75.1 −5.5 0.55 −0.55 −0.42 0.26
FWI 15.3 −0.4 0.57 −0.70 0.24 −0.52 −0.15 0.27

BOAS n= 161 STN MEAN 18.6 56.8 10.3 2.3 51.3 42.6
STN MEAN MERRA-2 bias −0.4 0.7 0.8 0.4 8.1 −4.7

FFMC 74 −2 0.75 −0.86 0.36 −0.74 0.29 −0.16
DMC 26.9 −5.8 0.70 −0.71 −0.65
DC 217.9 −47.4 0.54 −0.27 0.17 −0.72 −0.38 0.46
ISI 3.7 −0.3 0.57 −0.69 0.63 −0.58 0.27
BUI 36.7 −7.7 0.71 −0.67 0.16 −0.70
FWI 8.4 −1.3 0.64 −0.71 0.52 −0.64

CEAS n= 169 STN MEAN 23.1 56.2 11.1 3.6 14.8 77.2
STN MEAN MERRA-2 bias −0.4 0 2.7 1.1 11 −7.1

FFMC 76.2 −1 0.76 −0.72 0.19 −0.53 0.25
DMC 29.5 −8.5 0.44 −0.23 −0.18
DC 179.1 −61.5 0.26 −0.39 −0.32 0.37
ISI 4.8 0.1 0.56 −0.66 0.49 −0.27
BUI 38.3 −11.5 0.39 −0.24 0.19
FWI 10.4 −1.6 0.64 −0.62 0.32 −0.32

3.1.3 Global FWI temporal correlations

To understand the degree to which MERRA-2 FWI com-
ponents capture daily changes in station FWI, Fig. 7 shows
the correlation at each station between the daily station and
MERRA-2 FWI component values during each station’s 4-
month fire season. The histogram inset in each panel shows
the frequency distribution of the correlations across stations.
The histograms also show the frequency distribution of cor-
relations calculated using 3, 7 and 30 d averages of the daily
time series, which reflects the timescales over which fire
weather analyses are done. Figure 8 is similar but for the in-
put weather variables.

The MERRA-2 and station FFMC (Fig. 7a) are corre-
lated at stations over the northern midlatitudes (TENA and
EURO), weakening somewhat over BONA and BOAS, and
correlations are lower over the tropics, most clearly seen

over Thailand, Malaysia and the Philippines. The median
correlation across all stations increases from r = 0.75 for
daily FFMC to r = 0.79 for 3 d averages, r = 0.81 for 7 d
averages and r = 0.83 for 30 d averages, and the frequency
distribution becomes more left-skewed for longer averaging
windows. Globally, the spatial correlation distribution most
closely follows that of the correlation between MERRA-2
and station RH (Fig. 8b), as does the change in frequency
distribution with the averaging period, though with a progres-
sively flatter peak for the RH.

Correlations between daily station and MERRA-2 DMC
(Fig. 7b) are lower than for the FFMC, with a median cor-
relation of r = 0.68 for the daily time series. Areas of low
correlation for the DMC are over the central US, northern
Canada, southern central Siberia, central China, Thailand
and Malaysia. The DMC correlations are less sensitive to the
averaging period than the FFMC but increase to r = 0.73 for
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Table 5. Same as Table 2 but for the SEAS, EQAS and AUST regions.

TEMP RH WDSPD PREC SNOWD FIRESEASON
(◦C) (%) (km h−1) (mm d−1) (%) (%)

SEAS n= 63 STN MEAN 29.4 56.5 8.2 2 0 99
STN MEAN MERRA-2 bias −0.4 −4.9 3.2 0.5 0.1 0.4

FFMC 83.8 −0.3 0.67 −0.79 0.29 −0.76 −0.35
DMC 77.7 −1 0.60 −0.54 −0.64 0.35 −0.75
DC 372.6 −12.7 0.53 −0.42 −0.63 −0.57
ISI 5.3 1.6 0.67 −0.71 0.55 −0.49
BUI 95.7 −1.9 0.61 −0.53 −0.65 0.28 −0.72
FWI 17.2 2.8 0.73 −0.76 0.36 −0.69 −0.38

EQAS n= 39 STN MEAN 30.2 68.5 9.6 6.5 0 99.1
STN MEAN MERRA-2 bias −2.3 6.8 −1.5 2.1 0 0.3

FFMC 72.8 −14.8 0.62 −0.63 0.59
DMC 14.8 −9 0.39 −0.39
DC 110.9 −36.6 0.33 −0.59
ISI 2.8 −1.7 0.51 −0.62 0.39
BUI 20.6 −11.7 0.39 −0.32 −0.37
FWI 5 −3.5 0.37 −0.43

AUST n= 344 STN MEAN 24.4 42.6 18.7 1.2 0.2 97.4
STN MEAN MERRA-2 bias 0.3 −1.2 −1.6 0.3 0.5 0.9

FFMC 86.3 0.1 0.90 −0.82 −0.50 0.68
DMC 110.8 −18.2 0.44 −0.52 −0.32 0.15 0.18
DC 554.4 −87.5 0.28 −0.22 −0.59 0.33
ISI 13.8 −0.8 0.46 −0.45 0.64 −0.23
BUI 137.5 −21.5 0.47 −0.52 −0.28 −0.22 0.14 0.24
FWI 34.9 −2.6 0.60 −0.59 0.50 −0.37 0.19

a 30 d average. The DMC correlation pattern corresponds to
that of the PREC correlation (Fig. 8d). For different averag-
ing periods, the change in frequency distributions of DMC
correlations appears to be limited by that of the change in
PREC correlations.

DC correlations are higher than for the DMC (Fig. 7c) for
the daily time series and are less strongly related spatially
to those of PREC because of less sensitivity to individual
precipitation events. Longer averaging periods have no ef-
fect on DC correlations because the DC is less sensitive to
how the precipitation is distributed over time. ISI correlations
(Fig. 7d) are most closely related to WDSPD correlation pat-
terns (Fig. 8c), seen most clearly over North America and
Australia. The change in frequency distribution of ISI cor-
relations reflects those of the FFMC and WDSPD. The BUI
(Fig. 7e) correlation patterns for daily data follow those of
the DMC but are higher due to the influence of the DC. The
FWI (Fig. 7f) correlation patterns follow those of the ISI, as
does the rightward shift in the frequency distribution of cor-
relations with increasing averaging period.

3.2 GEOS-5 FWI forecast evaluation for 2018

3.2.1 Example for the 2018 fire season over central
British Columbia, Canada

The forecast evaluation focuses on the FWI component. To
illustrate the performance of FWI forecasts over a single re-
gion, we use the severe 2018 fire season over western cen-
tral British Columbia (BC), Canada (Tollefson, 2018). The
FWI System is used operationally in BC, with prevention
and preparedness measures tied to joint BUI–FWI thresh-
olds (Stocks et al., 1989). For simplicity, we interpret the
2018 FWI variation using the “marginal” FWI thresholds.
Figure 9 shows the 137 065 km2 Fraser Plateau and Basin
complex ecoregion from the Terrestrial Ecoregions of the
World, where several of the largest fires burned. This cor-
responds roughly to the BC government’s Interior Plateau
Region II, where an FWI of greater than 31 is considered ex-
treme (Stocks et al., 1989). For context, the 500 hPa heights
for the first 3 weeks of August 2018 leading up to the peak in
fire activity are also shown. The relevant feature is a persis-
tent ridge of high pressure extending from the southwestern
US to the Yukon, which is associated with warm and dry con-
ditions in BC and, historically, higher fire activity in western
Canada (Skinner et al., 1999).
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Figure 7. Correlation between daily station and MERRA-2 FWI component values over 2004–2018 during the local 4-month fire season.
The inset histograms show the frequency distribution of correlations across all stations for daily, 3, 7 and 30 d average FWI components.

Figure 8. Same as Fig. 7 but for input weather variables.
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Figure 9. Average GEOS-5 analysis 500 hPa heights (dam) over
Canada and the US from 1 to 21 August 2018. The area in red is the
Fraser Plateau and Basin complex ecoregion from the Terrestrial
Ecoregions of the World.

Figure 10a shows the daily MODIS active fire counts and
GEOS-5 analysis FWI averaged over the Fraser Plateau and
Basin complex ecoregion. The FWI System calculations start
up at the end of April after snowmelt, and the FWI remains
below 10 through May and June. The FWI increases over
July and early August and is punctuated by two rain events
from which the FWI recovered after several days. Under
warm and dry conditions, the FWI mostly remained above
20 for the first 3 weeks of August, during which several large
fire complexes grew, shown by the increase in daily MODIS
active fires, which peaked on 22 August.

Figure 10b shows the forecast FWI over the region at lead
times of 1 to 8 d using the approach of Carbin et al. (2016).
The FWI color scale is similar to that of the Global Wildfire
Information System (http://gwis.jrc.ec.europa.eu, last access:
16 February 2020), which reflects a wider range than that
over BC. The shaded FWI on the bottom row with lead time 0
corresponds to the FWI time series in Fig. 10a and represents
the forecast target on different days. Reading upward, each
row shows the forecast with increasing lead time; a perfect
forecast over lead times of up to 8 d would be shown by a
vertical line with the same color as that on the target date.

For May and June, the forecasts capture the low FWI for
lead times of up to 8 d. The observed increase in the FWI
mid-July is captured at lead times of up to 5 d, as is that at
the end of the month. The low FWI of 10 at the beginning of
August following a 1 d rain event is captured by the forecast
up to 8 d in advance. At the end of the first week of Au-
gust, there was lower FWI forecast between 4 and 5 d in ad-
vance, indicated by the isolated patch of blue, which did not
strongly verify. The forecasts captured the increase toward a
high (> 20) FWI in mid-August and the peak FWI of 29 on
22 August, when fire activity was at its highest. This was fol-

lowed by a lower FWI for September and October which was
well-forecast, including several brief FWI calculation “shut-
downs” before the final shutdown at the end of October. Dur-
ing the May–October fire season, the correlation between the
daily analysis and forecast FWI was r = 0.96 at the 2 d lead
time, r = 0.88 at the 4 d lead time, r = 0.82 at the 6 d lead
time and r = 0.68 at the 8 d lead time.

3.2.2 Global FWI forecast correlations and biases

The maps in Fig. 11 show the correlation between the anal-
ysis and forecast FWI at lead times of 1 to 8 d for FWI val-
ues averaged over each of the 771 Terrestrial Ecoregions of
the World, excluding unvegetated areas. For each ecoregion,
only the four consecutive months with the highest mean FWI
were considered. As with the comparison of the station and
MERRA-2 FWI, this was done to reduce the influence of wet
and dry seasonality in the tropics in the correlations and to
make for a more meaningful forecast comparison between
regions with year-round versus partial-year fire seasons.

At a lead time of 1 d, there is mostly perfect correlation
between the forecast and analysis FWI across all ecoregions,
with slightly lower values in the eastern US, southern South
America, the Sahel, southern Africa and southern Asia. At a
lead time of 3 d, correlations are less than 0.80 over parts of
northern Canada, the southeastern US, northern Africa and
southern Asia but otherwise remain high. At a lead time of
5 d, there is a broad arc of low (r < 0.50) correlation stretch-
ing across northern Canada and lower correlations over the
eastern US. Correlations also decrease over southern South
America, southern Africa and northern Africa adjacent to the
Sahara, Siberia, southern Asia, and the ecoregions in SEAS
and EQAS along the Pacific Rim. At lead times of 7 and 8 d,
there is a wide range of correlations between the forecast and
analysis FWI. Correlations are high (r > 0.80) over parts of
the western US, central America and northern South Amer-
ica, central Africa, parts of the Mediterranean, and southern
China and northern southeastern Asia but are otherwise very
low.

Figure 12 shows the distribution of ecoregion correlations
between the forecast and analysis FWI at different lead times,
organized by the GFED regions. The decay of forecast skill
is captured by how much the distribution shifts leftward with
increasing lead time. Over boreal North America (BONA)
and boreal Asia (BOAS), there is a steady leftward shift in the
distribution and flattening of the distribution after a lead time
of 4 d. The faster decay in forecast skill over cold regions is
in part due to less variability in the FWI and larger ecoregions
with more within-region variation in the FWI. Over temper-
ate North America (TENA) and Australia (AUST), there is
a slower leftward shift in the distribution and sharper peaks
around median correlations of 0.58 and 0.49, respectively.
Over central America (CEAM), South America (SAM) and
Africa (AFR), by contrast, the forecast skill deteriorates more
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Figure 10. (a) Daily MODIS active fire totals (> 80 % confidence only) and FWI calculated from GEOS-5 analysis field averaged over the
Fraser Plateau and Basin complex ecoregion in Fig. 9. (b) Forecasts of the FWI at lead times of up to 8 d. The FWI in the time series of (a)
corresponds to the lead 0 row at the bottom of the colored plot, separated from the forecasts by the white horizontal line. Missing FWI values
in both panels indicate that FWI calculations stopped due to cold temperatures or snow cover.

slowly, with median correlations of greater than 0.80 at lead
times of 5 d.

Figure 13 shows the bias between the forecast and analysis
FWI for each ecoregion. At high northern latitudes, there is
no discernible systematic bias in the FWI forecasts for any
lead time, but this is in part a function of the narrower FWI
scale over those regions. Moving equatorward, the FWI fore-
casts are in general biased high, which is most apparent over
the US, southeastern Brazil and southern Asia. This bias in-
creases with lead time but is less apparent than the decay in
correlation with lead time in Fig. 12. Compared to the decay
in correlation, the biases do not increase as significantly with
lead time. Figure 14 shows the distribution of forecast bi-
ases across ecoregions with increasing lead time, organized
by GFED region. Over BONA and BOAS, there is no sys-
tematic change in bias with lead time, but across all other
ecoregions, the distribution of biases shifts rightward with
increasing lead time.

The skill of the FWI forecasts will depend on the forecast
skill for the underlying weather input values. There was no
association between the regional differences in FWI corre-
lation decay with lead time in Fig. 11 and those for TEMP
correlation, which decreased more slowly (not shown). The

decrease in PREC forecast correlation is shown in Fig. 15.
There is some association between patterns in the decrease
in FWI forecast correlation and precipitation correlation, but
the latter tends to decrease more quickly with increasing lead
time. Over North America, for example, the northeastward
decrease in FWI skill is only weakly apparent in the precip-
itation map. There was a stronger association with RH fore-
cast correlation, shown in Fig. 16. For lead times of greater
than 4 d, there is a more apparent relationship between pat-
terns of the FWI and RH forecast skill at continental scales.

4 Discussion

For the FWI fields calculated from MERRA-2 weather in-
puts, the dependence of biases in the FWI components on
weather inputs varied by component and region. Of any sin-
gle input, biases in the TEMP and RH across stations tended
to be correlated with biases in the FWI components most
frequently across GFED regions. Systematic, persistent bi-
ases in the TEMP and RH will continually affect the mois-
ture codes, whereas PREC, even if biased, is more episodic
and will also be buffered slightly by the precipitation thresh-
olds for the wetting phases of the moisture codes and, in the
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Figure 11. Correlation (r) between daily analysis (obs) and forecast (fcst) FWI for 2018 at lead times of 1 to 8 d, for GEOS-5 grid points
averaged within each of 771 Terrestrial Ecoregions of the World. Correlations are calculated only over the local fire season in each ecoregion,
defined as the 4-month period with the highest mean FWI.

FFMC, a fast recovery from individual precipitation events.
Relationships between WDSPD biases and ISI biases were
present in several regions (AUST, BOAS, CEAM, BONA),
but with weaker relationships to FWI biases because of the
influence of other inputs and intermediate FWI components.
These biases should be taken account when using a MERRA-
2-based FWI for fire–climate analyses and should be the
focus, alongside precipitation, of bias-correction efforts in
computing fire weather indices from analysis and forecast
fields. Biases in the FIRESEASON lengths were related to
biases in the DC over the northern midlatitudes, presumably

because of less drying time over which the DC can increase
during the fire season.

The biases seen in the MERRA-2-based FWI were gen-
erally consistent with comparisons to station for other fire
weather products, at least in sign. In comparing the sta-
tion to high-resolution-analysis McArthur Forest Fire Dan-
ger Index over southeastern Australia, Clarke et al. (2013)
found a change from positive to negative analysis field bias
moving from the interior to the coast. Over that region, the
FWI (Fig. 5f) shows no positive bias inland, but the nega-
tive bias does strengthen toward the coast, due primarily to a
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Figure 12. Distributions of correlations between daily GEOS-5 forecast and analysis FWI at different lead times for ecoregions in each
GFED region.

corresponding gradient toward stronger low wind-speed bi-
ases in MERRA-2. Over the Great Lakes region, Horel et
al. (2014) found that the FWI components calculated from
high-resolution analysis fields were biased low except for the
DMC, which was consistent with the biases in Fig. 5. Over
Spain, there was a change in FWI bias from high to low when
moving toward the Mediterranean coast (Fig. 5f), which was

also seen in Bedia et al. (2012) for seven stations, particu-
larly for the FWI calculated from the National Centers for
Environmental Prediction/National Center for Atmospheric
Research reanalysis.

There are no global evaluations of short-term fire weather
forecast skill against which the FWI forecasts can be
compared, but several comparable regional studies have
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Figure 13. Same as Fig. 11 but for the FWI bias (forecast analysis – FCST-ANA).

been conducted. Using high-resolution WRF forecasts,
Mölders (2010) found that FWI forecasts June of 2005 in
the interior of Alaska were skillful, with little decrease in
skill for leads of up to 5 d. The GEOS-5-based FWI fore-
casts showed a slight decrease over the ecoregions of south-
ern Alaska but also remained skillful at lead times of up to
5 d, presumably because of the ability of the GEOS-5 model
to resolve large-scale weather systems arriving from the Pa-
cific, but there was a significant drop in skill in terms of
forecast–analysis correlations over this region for leads of
6–8 d, however. Horel et al. (2014) found that FWI forecasts
over the US Great Lakes region for the 2012 fire season, bias
and RMSE of the forecasts relative to station data did not in-

crease significantly for leads of 24 and 48 h, consistent with
the GEOS-5-based FWI forecasts over that region, which,
compared to Alaska, remained skillful at longer lead times.
Freitas et al. (2018) compared the GEOS-5 500 hPa height
global anomaly pattern correlations for lead times of up to
5 d. For either convective parameterization considered, there
was a pronounced decrease in skill for forecast leads of 3–5 d
compared to 1–2 d. To the extent that the local fire weather
is controlled by the large-scale circulation, this is likely re-
flected in a similar drop in skill for many regions in Figs. 11
and 12 beyond lead times of 2 d, particularly in the extrat-
ropics. However, at a seasonal timescale, Bedia et al. (2018)
found that seasonal FWI predictions over Europe using the
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Figure 14. Same as Fig. 12 but for forecast biases.

ECMWF System 4 seasonal climate forecasts were influ-
enced by the skill of relative humidity predictions, consistent
with its importance over short forecasts examined here.

5 Conclusions

Meteorological analyses provide the only practical means of
making fire danger products at global scales, but these should

be accompanied by estimates of these products’ biases rela-
tive to weather station data. This study has done so for the
MERRA-2 reanalysis and identified the contributions of bi-
ases in different input weather variables to biases in FWI Sys-
tem components at continental scales. The focus of earlier
MERRA- and MERRA-2-based evaluation was precipitation
from rain gauges (Field et al., 2015) and satellites (Field,
2020); this study shows that biases in temperature and rel-
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Figure 15. Same as Fig. 11 but for precipitation (PREC).

ative humidity also need to be considered. While important,
errors in reanalysis precipitation affect FWI values episod-
ically, whereas persistent errors in temperature and relative
humidity affect the FWI values continuously.

Considering these discrepancies is particularly important
for any practical application of the data, which inevitably
require fire-environment-specific interpretation. The studies
listed in Table 1 are representative of FWI interpretation in
different fire environments and are mostly based on FWI
components calculated from weather station data. The fire
danger classifications therein will not necessarily be appli-
cable to FWI values calculated from reanalysis or analysis
fields. Two alternatives are to redevelop fire danger clas-

sifications for the particular data product (as examined by
Vitolo et al., 2018) or to apply bias corrections to the in-
put weather data values or calculated FWI values, using,
for example, techniques applied to climate model projections
which correct for biases in the models’ biases for present-day
climate (Yong et al., 2015; Casanueva et al., 2018). The latter
approach will require enough high-quality, hourly weather
station data, which were found to be limited for northern
Canada, South America, Africa, the Middle East, central
Eurasia and southern Asia, similar in this study and also in
Vitolo et al. (2019). In that regard, future evaluation of these
products would benefit from high-quality hourly weather
data archived by national meteorological agencies and state-
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Figure 16. Same as Fig. 11 but for relative humidity (RH).

and provincial-level agencies operating secondary weather
networks. Data from secondary station networks which are
not assimilated into reanalysis products will also be use-
ful for providing a fully independent evaluation. The 2004–
2018 period of this study was constrained by the availabil-
ity of MODIS snow cover data needed to supplement station
records. Longer-term station records would be helpful in de-
termining how changes in reanalysis input data sources, par-
ticularly for infrared and microwave radiances (as described
in Gelaro et al., 2017), translate into changes in surface tem-
perature, humidity and precipitation fields.

This study also provided a first, if limited, evaluation of
global FWI forecast skill. For 2018, forecasts at lead times of

1–2 d were very highly correlated with the analysis FWI, and
at longer lead times, correlations decreased more at high lati-
tudes. Forecasts at lead times of 7–8 d were largely unskillful,
and more spatially incoherent, which serves as a reminder
that despite their availability, longer-lead-time fire weather
forecasts from global models have very limited utility. It will
be important in future work to see if skill for different years is
comparable and also for more individual fire events. As the
use of fire weather from global analysis and forecast fields
becomes more widely used, systematic comparisons of dif-
ferent models will also be useful.
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