Articles | Volume 19, issue 10
Nat. Hazards Earth Syst. Sci., 19, 2295–2309, 2019
https://doi.org/10.5194/nhess-19-2295-2019

Special issue: Advances in computational modelling of natural hazards and...

Nat. Hazards Earth Syst. Sci., 19, 2295–2309, 2019
https://doi.org/10.5194/nhess-19-2295-2019
Research article
 | Highlight paper
22 Oct 2019
Research article  | Highlight paper | 22 Oct 2019

Ensemble models from machine learning: an example of wave runup and coastal dune erosion

Tomas Beuzen et al.

Related authors

Beach-face slope dataset for Australia
Kilian Vos, Wen Deng, Mitchell Dean Harley, Ian Lloyd Turner, and Kristen Dena Marie Splinter
Earth Syst. Sci. Data, 14, 1345–1357, https://doi.org/10.5194/essd-14-1345-2022,https://doi.org/10.5194/essd-14-1345-2022, 2022
Short summary
Lateral vegetation growth rates exert control on coastal foredune hummockiness and coalescing time
Evan B. Goldstein, Laura J. Moore, and Orencio Durán Vinent
Earth Surf. Dynam., 5, 417–427, https://doi.org/10.5194/esurf-5-417-2017,https://doi.org/10.5194/esurf-5-417-2017, 2017

Related subject area

Sea, Ocean and Coastal Hazards
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022,https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022,https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022,https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki earthquake: towards low-cost satellite-based tsunami warning systems
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022,https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022,https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary

Cited articles

Atkinson, A. L., Power, H. E., Moura, T., Hammond, T., Callaghan, D. P., and Baldock, T. E.: Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast, Coast. Eng., 119, 15–31, 2017. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. 
Berner, J., Achatz, U., Batté, L., Bengtsson, L., Cámara, A. D. L., Christensen, H. M., Colangeli, M., Coleman, D. R., Crommelin, D., Dolaptchiev, S. I., and Franzke, C. L.: Stochastic parameterization: Toward a new view of weather and climate models, B. Am. Meteorol. Soc., 98, 565–588, 2017. 
Beuzen, T. and Goldstein, E. B.: TomasBeuzen/BeuzenEtAl_2019_NHESS_GP_runup_model: First release of repo (Version 0.1), Zenodo, https://doi.org/10.5281/zenodo.3401739, 2019. 
Beuzen, T., Splinter, K. D., Turner, I. L., Harley, M. D., and Marshall, L.: Predicting storm erosion on sandy coastlines using a Bayesian network, in: Proceedings of Australasian Coasts & Ports: Working with Nature, 21–23 June 2017, Cairns, Australia, 102–108, 2017. 
Download
Short summary
Wave runup is important for characterizing coastal vulnerability to wave action; however, it is complex and uncertain to predict. We use machine learning with a high-resolution dataset of wave runup to develop an accurate runup predictor that includes prediction uncertainty. We show how uncertainty in wave runup predictions can be used practically in a model of dune erosion to make ensemble predictions that provide more information and greater predictive skill than a single deterministic model.
Altmetrics
Final-revised paper
Preprint