Articles | Volume 19, issue 10
https://doi.org/10.5194/nhess-19-2295-2019
https://doi.org/10.5194/nhess-19-2295-2019
Research article
 | Highlight paper
 | 
22 Oct 2019
Research article | Highlight paper |  | 22 Oct 2019

Ensemble models from machine learning: an example of wave runup and coastal dune erosion

Tomas Beuzen, Evan B. Goldstein, and Kristen D. Splinter

Related authors

Beach-face slope dataset for Australia
Kilian Vos, Wen Deng, Mitchell Dean Harley, Ian Lloyd Turner, and Kristen Dena Marie Splinter
Earth Syst. Sci. Data, 14, 1345–1357, https://doi.org/10.5194/essd-14-1345-2022,https://doi.org/10.5194/essd-14-1345-2022, 2022
Short summary
Lateral vegetation growth rates exert control on coastal foredune hummockiness and coalescing time
Evan B. Goldstein, Laura J. Moore, and Orencio Durán Vinent
Earth Surf. Dynam., 5, 417–427, https://doi.org/10.5194/esurf-5-417-2017,https://doi.org/10.5194/esurf-5-417-2017, 2017

Related subject area

Sea, Ocean and Coastal Hazards
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024,https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Revisiting regression methods for estimating long-term trends in sea surface temperature
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024,https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Global application of a regional frequency analysis to extreme sea levels
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024,https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary

Cited articles

Atkinson, A. L., Power, H. E., Moura, T., Hammond, T., Callaghan, D. P., and Baldock, T. E.: Assessment of runup predictions by empirical models on non-truncated beaches on the south-east Australian coast, Coast. Eng., 119, 15–31, 2017. 
Bauer, P., Thorpe, A., and Brunet, G.: The quiet revolution of numerical weather prediction, Nature, 525, 47–55, 2015. 
Berner, J., Achatz, U., Batté, L., Bengtsson, L., Cámara, A. D. L., Christensen, H. M., Colangeli, M., Coleman, D. R., Crommelin, D., Dolaptchiev, S. I., and Franzke, C. L.: Stochastic parameterization: Toward a new view of weather and climate models, B. Am. Meteorol. Soc., 98, 565–588, 2017. 
Beuzen, T. and Goldstein, E. B.: TomasBeuzen/BeuzenEtAl_2019_NHESS_GP_runup_model: First release of repo (Version 0.1), Zenodo, https://doi.org/10.5281/zenodo.3401739, 2019. 
Beuzen, T., Splinter, K. D., Turner, I. L., Harley, M. D., and Marshall, L.: Predicting storm erosion on sandy coastlines using a Bayesian network, in: Proceedings of Australasian Coasts & Ports: Working with Nature, 21–23 June 2017, Cairns, Australia, 102–108, 2017. 
Download
Short summary
Wave runup is important for characterizing coastal vulnerability to wave action; however, it is complex and uncertain to predict. We use machine learning with a high-resolution dataset of wave runup to develop an accurate runup predictor that includes prediction uncertainty. We show how uncertainty in wave runup predictions can be used practically in a model of dune erosion to make ensemble predictions that provide more information and greater predictive skill than a single deterministic model.
Altmetrics
Final-revised paper
Preprint