Articles | Volume 19, issue 10
https://doi.org/10.5194/nhess-19-2295-2019
https://doi.org/10.5194/nhess-19-2295-2019
Research article
 | Highlight paper
 | 
22 Oct 2019
Research article | Highlight paper |  | 22 Oct 2019

Ensemble models from machine learning: an example of wave runup and coastal dune erosion

Tomas Beuzen, Evan B. Goldstein, and Kristen D. Splinter

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Publish subject to minor revisions (review by editor) (06 Sep 2019) by Randall LeVeque
AR by Tomas Beuzen on behalf of the Authors (07 Sep 2019)  Author's response   Manuscript 
ED: Publish as is (11 Sep 2019) by Randall LeVeque
AR by Tomas Beuzen on behalf of the Authors (13 Sep 2019)
Download
Short summary
Wave runup is important for characterizing coastal vulnerability to wave action; however, it is complex and uncertain to predict. We use machine learning with a high-resolution dataset of wave runup to develop an accurate runup predictor that includes prediction uncertainty. We show how uncertainty in wave runup predictions can be used practically in a model of dune erosion to make ensemble predictions that provide more information and greater predictive skill than a single deterministic model.
Altmetrics
Final-revised paper
Preprint