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Abstract 8 

After decades of study and significant data collection of time-varying swash on sandy beaches, there is 9 

no single deterministic prediction scheme for wave runup that eliminates prediction error — even 10 

bespoke, locally tuned predictors present scatter when compared to observations. Scatter in runup 11 

prediction is meaningful and can be used to create probabilistic predictions of runup for a given wave 12 

climate and beach slope. This contribution demonstrates this using a data-driven Gaussian process 13 

predictor; a probabilistic machine learning technique. The runup predictor is developed using one year of 14 

hourly wave runup data (8328 observations) collected by a fixed LIDAR at Narrabeen Beach, Sydney, 15 

Australia. The Gaussian process predictor accurately predicts hourly wave runup elevation when tested 16 

on unseen data with a root mean-squared-error of 0.18 m and bias of 0.02 m. The uncertainty estimates 17 

output from the probabilistic GP predictor are then used practically in a deterministic numerical model of 18 

coastal dune erosion, which relies on a parameterization of wave runup, to generate ensemble predictions. 19 

When applied to a dataset of dune erosion caused by a storm event that impacted Narrabeen Beach in 20 

2011, the ensemble approach reproduced ~85% of the observed variability in dune erosion along the 3.5 21 

km beach and provided clear uncertainty estimates around these predictions. This work demonstrates how 22 

data-driven methods can be used with traditional deterministic models to develop ensemble predictions 23 

that provide more information and greater forecasting skill when compared to a single model using a 24 

deterministic parameterization; an idea that could be applied more generally to other numerical models 25 

of geomorphic systems.  26 



3 

 

1 Introduction 27 

Wave runup is important for characterizing the vulnerability of beach and dune systems and coastal 28 

infrastructure to wave action. Wave runup is typically defined as the time-varying vertical elevation of 29 

wave action above ocean water levels and is a combination of wave swash and wave setup (Holman, 30 

1986; Stockdon et al., 2006). Most parameterizations of wave runup use deterministic equations that 31 

output a single value for either the maximum runup elevation in a given time period, Rmax, or the elevation 32 

exceeded by 2% of runup events in a given time period, R2, based on a given set of input conditions. In 33 

the majority of runup formulae, these input conditions are easily obtainable parameters such as significant 34 

wave height, peak wave period, and beach slope (Atkinson et al., 2017; Holman, 1986; Hunt, 1959; 35 

Ruggiero et al., 2001; Stockdon et al., 2006). However, wave dispersion (Guza and Feddersen, 2012), 36 

wave spectrum (Van Oorschot and d'Angremond, 1969), nearshore morphology (Cohn and Ruggiero, 37 

2016), bore-bore interaction (García‐Medina et al., 2017), tidal stage (Guedes et al., 2013),  and a range 38 

of other possible processes have been shown to influence swash zone processes. Since typical wave runup 39 

parameterizations do not account for these more complex processes, there is often significant scatter in 40 

runup predictions when compared to observations (e.g., Atkinson et al., 2017; Stockdon et al., 2006). 41 

Even flexible machine learning approaches based on extensive runup datasets or consensus-style ‘model 42 

of models’ do not resolve prediction scatter in runup datasets (e.g., Atkinson et al., 2017; Passarella et al., 43 

2018b; Power et al., 2018). This suggests that the development of a perfect deterministic parameterization 44 

of wave runup, especially with only reduced, easily obtainable inputs (i.e., wave height, wave period, and 45 

beach slope), is improbable.  46 

 47 

The resulting inadequacies of a single deterministic parameterization of wave runup can cascade up 48 

through the scales to cause error in any larger model that uses a runup parameterization. It therefore makes 49 

sense to clearly incorporate prediction uncertainty into wave runup predictions. In disciplines such as 50 

hydrology and meteorology, with a more established tradition of forecasting, model uncertainty is often 51 

captured by using ensembles (e.g., Bauer et al., 2015; Cloke and Pappenberger, 2009). The benefits of 52 

ensemble modelling are typically superior skill and the explicit inclusion of uncertainty in predictions by 53 

outputting a range of possible model outcomes. Commonly used methods of generating ensembles include 54 
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combining different models (Limber et al., 2018) or perturbing model parameters, initial conditions and/or 55 

input data (e.g., via Monte Carlo simulations (e.g., Callaghan et al., 2013)).  56 

 57 

An alternative approach to quantify prediction uncertainty is to incorporate scatter about a mean 58 

prediction into model parameterizations. For example, wave runup predictions at every time step could 59 

be modelled with a deterministic parameterization plus a noise component that captures the scatter about 60 

the deterministic prediction caused by unresolved processes. If parameterizations are stochastic, or have 61 

a stochastic component, repeated model runs (given identical initial and forcing conditions) produce 62 

different model outputs – an ensemble – that represents a range of possible values the process could take. 63 

This is broadly analogous to the method of “stochastic parameterization” used in the weather forecasting 64 

community for sub-grid scale processes and parameterizations (Berner et al., 2017). In these applications, 65 

stochastic parameterization has been shown to produce better predictions than traditional ensemble 66 

methods and is now routinely used by many operational weather forecasting centers (Berner et al., 2017; 67 

Buchanan, 2018). 68 

 69 

Stochastically varying a deterministic wave runup parameterization to form an ensemble still requires 70 

defining the stochastic term — i.e., the stochastic element that should be added to the predicted runup at 71 

each model time step. An alternative to specifying a predefined distribution or a noise term added to a 72 

parameterization is to learn and parameterize the variability in wave runup from observational data using 73 

machine learning techniques. Machine learning has had a wide range of applications in coastal 74 

morphodynamics research (Goldstein et al., 2018) and has shown specific utility in understanding swash 75 

processes (Passarella et al., 2018b; Power et al., 2018) as well as storm driven erosion (Beuzen et al., 76 

2018; den Heijer et al., 2012; Goldstein and Moore, 2016; Palmsten et al., 2014; Plant and Stockdon, 77 

2012). While many machine learning algorithms and applications are often used to optimize deterministic 78 

predictions, a Gaussian process is a probabilistic machine learning technique that directly captures model 79 

uncertainty from data (Rasmussen and Williams, 2006). Recent work has specifically used Gaussian 80 

processes to model coastal processes such as large scale coastline erosion (Kupilik et al., 2018) and 81 

estuarine hydrodynamics (Parker et al., 2019).  82 
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 83 

The work presented here is focused on using a Gaussian process to build a data-driven probabilistic 84 

predictor of wave runup that includes estimates of uncertainty. While quantifying uncertainty in runup 85 

predictions from data is useful in itself, the benefit of this methodology is in explicitly including the 86 

uncertainty with the runup predictor in a larger model that uses a runup parametrization, such as a coastal 87 

dune erosion model. Dunes on sandy coastlines provide a natural barrier to storm erosion by absorbing 88 

the impact of incident waves and storm surge and helping to prevent or delay flooding of coastal 89 

hinterland and infrastructure (Mull and Ruggiero, 2014; Sallenger, 2000; Stockdon et al., 2007). The 90 

accurate prediction of coastal dune erosion is therefore critical for characterizing the vulnerability of dune 91 

and beach systems and coastal infrastructure to storm events. A variety of methods are available for 92 

modelling dune erosion including: simple conceptual models relating hydrodynamic forcing, antecedent 93 

morphology and dune response (Sallenger, 2000); empirical dune-impact models that relate time-94 

dependent dune erosion to the force of wave impact at the dune (Erikson et al., 2007; Larson et al., 2004; 95 

Palmsten and Holman, 2012); data-driven machine learning models (Plant and Stockdon, 2012); and more 96 

complex physics-based models (Roelvink et al., 2009). In this study, we focus on dune-impact models, 97 

which are simple, commonly used models that typically rely on a parameterization of wave runup to 98 

model time-dependent dune erosion. As inadequacies in the runup parameterization can jeopardize the 99 

success of model results (Overbeck et al., 2017; Palmsten and Holman, 2012; Splinter et al., 2018), it 100 

makes sense to use a runup predictor that includes prediction uncertainty. 101 

 102 

The overall aim of this work is to demonstrate how probabilistic data-driven methods can be used with 103 

deterministic models to develop ensemble predictions, an idea that could be applied more generally to 104 

other numerical models of geomorphic systems. Sect. 2 first describes the Gaussian process model theory.  105 

In Sect. 3 the Gaussian process runup predictor is developed. In Sect. 4 an example application of the 106 

Gaussian process predictor of runup inside a morphodynamic model of coastal dune erosion to build a 107 

‘hybrid’ model (Goldstein and Coco, 2015; Krasnopolsky and Fox-Rabinovitz, 2006) that can generate 108 

ensemble output is presented. A discussion of the results and technique is provided in Sect. 5 followed 109 
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by conclusions in Sect. 6. The data and code used to develop the Gaussian process runup predictor in this 110 

manuscript are publicly available at https://github.com/TomasBeuzen/BeuzenEtAl_GP_Paper.  111 

https://github.com/TomasBeuzen/BeuzenEtAl_GP_Paper
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2 Gaussian Processes 112 

2.1 Gaussian Process Theory  113 

Gaussian processes (GPs) are data-driven, non-parametric models. A brief introduction to GPs is given 114 

here; for a more detailed introduction the reader is referred to Rasmussen and Williams (2006). There are 115 

two main approaches to determine a function that best parameterizes a process over an input space: 1) 116 

select a class of functions to consider, e.g., polynomial functions, and best fit the functions to the data (a 117 

parametric approach); or, 2) consider all possible functions that could fit the data, and assign higher 118 

weight to functions that are more likely (a non-parametric approach) (Rasmussen and Williams, 2006). 119 

In the first approach it is necessary to decide on a class of functions to fit to the data – if all or parts of the 120 

data are not well modelled by the selected functions, then the predictions may be poor. In the second 121 

approach there is an infinite set of possible functions that could fit a data set (imagine the number of paths 122 

that could be drawn between two points on a graph). A GP addresses the problem of infinite possible 123 

functions by specifying a probability distribution over the space of possible functions that fit a given 124 

dataset. Based on this distribution, the GP quantifies what function most likely fits the underlying process 125 

generating the data and gives confidence intervals for this estimate. Additionally, random samples can 126 

also be drawn from the distribution to provide examples of what different functions that fit the dataset 127 

might look like. 128 

 129 

A GP is defined as a collection of random variables, any finite set of which has a multivariate Gaussian 130 

distribution. The random variables in a GP represent the value of the underlying function that describes 131 

the data, f(x), at location x. The typical workflow for a GP is to define a prior distribution over the space 132 

of possible functions that fit the data, form a posterior distribution by conditioning the prior on observed 133 

input/output data pairs (“training data”), and to then use this posterior distribution to predict unknown 134 

outputs at other input values (“testing data”). The key to GP modelling is the use of the multivariate 135 

Gaussian distribution, which has simple closed form solutions to the aforementioned conditioning 136 

process, as described below. 137 
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 138 

Whereas a univariate Gaussian distribution is defined by a mean and variance (i.e., Ɲ(μ,σ2)), a GP (a 139 

multivariate Gaussian distribution) is completely defined by a mean function m(x) and covariance 140 

function k(x, x’) (also known as a “kernel”), and is typically denoted: 141 

 142 

𝑓(𝒙)~𝒩(𝑚(𝒙), 𝑘(𝒙, 𝒙′))          (1) 143 

 144 

Where x is an input vector of dimension D (x ∈ ℝD), and f is the unknown function describing the data. 145 

Note that for the remainder of this paper, a variable denoted in bold text represents a vector. The mean 146 

function, m(x), describes the expected mean value of the function describing the data at location x, while 147 

the covariance function encodes the correlation between the function values at locations in x. 148 

 149 

These concepts of GP development are further described using a hypothetical dataset of significant wave 150 

height (Hs) versus wave runup (R2) shown in Fig. 1A. The first step of GP modelling is to constrain the 151 

infinite set of functions that could fit a dataset by defining a prior distribution over the space of functions. 152 

This prior distribution encodes belief about what the underlying function is expected to look like (e.g., 153 

smooth/erratic, cyclic/random, etc.) before constraining the model with any observed training data. 154 

Typically it is assumed that the mean function of the GP prior, m(x), is 0 everywhere, to simplify notation 155 

and computation of the model (Rasmussen and Williams, 2006). Note that this does not limit the GP 156 

posterior to be a constant mean process. The covariance function, k(x,x’), ultimately encodes what the 157 

underlying functions look like because it controls how similar the function value at one input point is to 158 

the function value at other input points.  159 

 160 

There are many different types of covariance functions or “kernels”. One of the most common, and the 161 

one used in this study, is the squared exponential covariance function: 162 

 163 

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎𝑓
2exp⁡[−∑

1

2𝑙𝑑
2 (𝑥𝑑 ,𝑖−𝑥𝑑 ,𝑗 )

2𝐷
𝑑=1 ]       (2) 164 

 165 
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Where σf is the signal variance and l is known as the length-scale, both of which are hyperparameters in 166 

the model that can be estimated from data (discussed further in Sect. 2.2). Together the mean function 167 

and covariance function specify a multivariate Gaussian distribution: 168 

 169 

𝑓(𝒙)~𝒩(𝟎,𝐾)           (3) 170 

 171 

Where f is the output of the prior distribution, the mean function is assumed to be 0 and K is the covariance 172 

matrix made by evaluating the covariance function at arbitrary input points that lie within the domain 173 

being modelled (i.e., K(x,x)i,j = k(xi,xj)). Random sample functions can be drawn from this prior 174 

distribution as demonstrated in Fig. 1B. 175 

 176 

The goal is to determine which of these functions actually fit the observed data points (training data) in 177 

Fig. 1A. This can be achieved by forming a posterior distribution on the function space by conditioning 178 

the prior with the training data. Roughly speaking, this operation is mathematically equivalent to drawing 179 

an infinite number of random functions from the multivariate Gaussian prior (Eq. (3)), and then rejecting 180 

those that do not agree with the training data. As mentioned above, the multivariate Gaussian offers a 181 

simple, closed form solution to this conditioning. Assuming that our observed training data is noiseless 182 

(i.e., y exactly represents the value of the underlying function f) then we can condition the prior 183 

distribution with the training data samples (x,y) to define a posterior distribution of the function value (f*) 184 

at arbitrary test inputs (x*): 185 

 186 

𝒇∗|𝒚~𝒩(𝐾∗𝐾
−1𝑦, 𝐾∗∗ −𝐾∗𝐾

−1𝐾∗
𝑇)         (4) 187 

 188 

Where f* is the output of the posterior distribution at the desired test points x*, y is the training data outputs 189 

at inputs x, K* is the covariance matrix made by evaluating the covariance function (Eq. (2)) between the 190 

test inputs x* and training inputs x (i.e., k(x*,x)), K is the covariance matrix made by evaluating the 191 

covariance function between training data points x, and K** is the covariance matrix made by evaluating 192 

the covariance function between test points x*. Function values can be sampled from the posterior 193 
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distribution as shown in Fig. 1C. These samples represent random realizations of what the underlying 194 

function describing the training data could look like.  195 

 196 

As stated earlier, in Eq. (4) and Fig. 1C there is an assumption that the training data is noiseless and 197 

represents the exact value of the function at the specific point in input space. In reality, there is error 198 

associated with observations of physical systems, such that: 199 

 200 

𝒚 = 𝑓(𝒙) + 𝜀            (5) 201 

 202 

Where ε is assumed to be independent identically distributed Gaussian noise with variance n
2. This noise 203 

can be incorporated into the GP modelling framework through the use of a white noise kernel that adds 204 

an element of Gaussian white noise into the model: 205 

 206 

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎𝑛
2𝛿𝑖𝑗           (6) 207 

 208 

Where n
2 is the variance of the noise and ij is a Kronecker delta which is 1 if i = j and 0 otherwise. The 209 

squared exponential kernel and white noise kernel are closed under addition and product (Rasmussen and 210 

Williams, 2006), such that they can simply be combined to form a custom kernel for use in the GP: 211 

 212 

𝑘(𝑥𝑖, 𝑥𝑗) = 𝜎𝑓
2 exp {−∑

1

2𝑙𝑑
2 (𝑥𝑑,𝑖 − 𝑥𝑑,𝑗)

2𝐷
𝑑=1 } + 𝜎𝑛

2𝛿𝑖𝑗      (7) 213 

 214 

The combination of kernels to model different signals in a dataset (that vary over different spatial or 215 

temporal timescales) is common in applications of GPs (Rasmussen and Williams, 2006; Reggente et al., 216 

2014; Roberts et al., 2013).  Samples drawn from the resultant “noisy” posterior distribution are shown 217 

in Fig. 1D in which the GP can now be seen to not fit the observed training data precisely. 218 
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 219 

Fig. 1: A) Five hypothetical random observations of significant wave height (Hs) and 2% wave runup elevation (R2). B) The Gaussian 220 
process (GP) prior distribution. C) The GP posterior distribution, formed by conditioning the prior distribution in (B) with the 221 
observed data points in (A), assuming the observations are noise-free. D). The GP posterior distribution conditioned on the 222 
observations with a noise component. 223 

 224 

2.2 Gaussian Process Kernel Optimization 225 

In Eq. (7) there are three hyperparameters: the signal variance (σf), the length scale (l) and the noise 226 

variance (σn). These hyperparameters are typically unknown but can be estimated and optimized based 227 

on the particular dataset. Here, this optimization is performed by using the typical methodology of 228 

maximizing the log-marginal-likelihood of the observed data y given the hyperparameters: 229 

 230 

log⁡𝑝(𝑦|𝑥, 𝜎𝑓, 𝑙, 𝜎𝑛)           (8) 231 
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 232 

The Python toolkit SciKit-Learn (Pedregosa et al., 2011) was used to develop the GP described in this 233 

study. For the Reader unfamiliar with the Python programming language, alternative programs for 234 

developing Gaussian Processes include Matlab (Rasmussen and Nickisch, 2010) and R (Dancik and 235 

Dorman, 2008; MacDonald et al., 2015).  236 

2.3 Training a Gaussian Process Model 237 

It is standard practice in the development of data-driven machine learning models to divide the available 238 

dataset into training, validation and testing subsets. The training data is used to fit model parameters. The 239 

validation data is used to evaluate model performance and the model hyperparameters are usually varied 240 

until performance on the validation data is optimized. Once the model is optimized, the remaining test 241 

dataset is used to objectively evaluate its performance and generalizability. A decision must be made 242 

about how to split a dataset into training, validation and testing subsets. There are many different 243 

approaches to handle this splitting process; for example, random selection, cross-validation, stratified 244 

sampling, or a number of other deterministic sampling techniques (Camus et al., 2011). The exact 245 

technique used to generate the data subsets often depends on the problem at hand. Here, there were two 246 

constraints to be considered; first, the computational expense of GPs scales by O(n3) (Rasmussen and 247 

Williams, 2006), so it is desirable to keep the training set as small as possible without deteriorating model 248 

performance; and, secondly, machine learning models typically perform poorly with out-of-sample 249 

predictions (i.e., extrapolation), so it is desirable to include in the training set the data samples that 250 

captures the full range of variability in the data. Based on these constraints, we used a maximum 251 

dissimilarity algorithm (MDA) to divide the available data into training, validation and testing sets. 252 

 253 

The MDA is a deterministic routine that iteratively adds a data point to the training set based on how 254 

dissimilar it is to the data already included in the training set. Camus et al. (2011) provide a comprehensive 255 

introduction to the MDA selection routine and it has been previously used in machine learning studies 256 

(e.g., Goldstein et al., 2013). Briefly, to initialize the MDA routine, the data point with the maximum sum 257 

of dissimilarity (defined by Euclidean distance) to all other data points is selected as the first data point 258 
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to be added to the training data set. Additional data points are included in the training set through an 259 

iterative process whereby the next data point added is the one with maximum dissimilarity to those already 260 

in the training set - this process continues until a user-defined training set size is reached. In this way the 261 

MDA routine produces a set of training data that captures the range of variability present in the full 262 

dataset. The data not selected for the training set are equally and randomly split to form the validation 263 

dataset and test dataset. While alternative data-splitting routines are available, including simple random 264 

sampling, stratified random sampling, self-organizing maps and k-means clustering (Camus et al., 2011), 265 

the MDA routine used in this study was found in preliminary testing (not presented) to produce the best 266 

GP performance with the least computational expense.  267 



14 

 

3 Development of a Gaussian Process Runup Model 268 

3.1 Runup Data 269 

In 2014, an extended-range LIDAR (LIght Detection And Ranging) device (SICK LD-LRS 2110) was 270 

permanently installed on the rooftop of a beachside building (44 m above mean sea level) at Narrabeen-271 

Collaroy Beach (hereafter referred to simply as Narrabeen) on the south-east coast of Australia (Fig. 2). 272 

Since 2014, this LIDAR has continuously scanned a single cross-shore profile transect extending from 273 

the base of the beachside building to a range of 130 m, capturing the surface of the beach profile and 274 

incident wave swash at a frequency of 5 Hz in both daylight and non-daylight hours. Specific details of 275 

the LIDAR setup and functioning can be found in (Phillips et al., 2019). 276 

 277 

 278 

 279 

Fig. 2: A) Narrabeen Beach, located on the southeast coast of Australia. B) Conceptual figure of the fixed LIDAR setup. C) A five-280 
minute extract of runup elevation extracted from the LIDAR data, individual runup maxima are marked with red circles. 281 
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 282 

Narrabeen Beach is a 3.6 km long embayed beach bounded by rocky headlands. It is composed of fine to 283 

medium quartz sand (D50 ≈ 0.3 mm), with a ~30% carbonate fraction. Offshore, the coastline has a steep 284 

and narrow (20 – 70 km) continental shelf (Short and Trenaman, 1992). The region is microtidal and 285 

semidiurnal with a mean spring tidal range of 1.6 m and has a moderate to high energy deep water wave 286 

climate characterized by persistent long-period south-southeast swell waves that is interrupted by storm 287 

events (significant wave height > 3 m) typically 10 – 20 times per year (Short and Trenaman, 1992). In 288 

the present study, approximately one year of the high-resolution wave runup LIDAR dataset available at 289 

Narrabeen is used to develop a data-driven parameterization of the 2% exceedance of wave runup (R2). 290 

Data used to develop this parameterization were at hourly resolution and include: R2, the beach slope (β), 291 

offshore significant wave height (Hs), and peak wave period (Tp). These data are described below and 292 

have been commonly used to parameterize R2 in other empirical models of wave runup (e.g., Holman, 293 

1986; Hunt, 1959; Stockdon et al., 2006).  294 

 295 

Individual wave runup elevation on the beach profile was extracted on a wave-by-wave basis from the 296 

LIDAR dataset (Fig. 2C) using the neural network runup detection tool developed by Simmons et al. 297 

(2019). Hourly R2 was calculated as the 2% exceedance value for a given hour of wave runup 298 

observations. β was calculated as the linear (best-fit) slope of the beach profile over which two standard 299 

deviations of wave runup values were observed during the hour. Hourly Hs and Tp data were obtained 300 

from the Sydney Wave Rider buoy, situated 11 km offshore of Narrabeen in ~ 80 m water depth. 301 

Narrabeen is an embayed beach, where prominent rocky headlands both attenuate and refract incident 302 

waves. To remove these effects in the wave data and to emulate an open coastline and generalize the 303 

parameterization of R2 presented in this study, offshore wave data were first transformed to a nearshore 304 

equivalent (10 m water depth) using a pre-calculated look-up table generated with the SWAN spectral 305 

wave model based on a 10 m resolution grid (Booij et al., 1999), and then reverse shoaled back to deep 306 

water wave data. A total of 8328 hourly samples of R2, β, Hs and Tp were extracted to develop a 307 

parameterization of R2 in this study. Histograms of this data are shown in Fig. 3. 308 

 309 
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 310 

Fig. 3: Histograms of the 8328 data samples extracted from the Narrabeen LIDAR: (A) significant wave height (Hs); (B) peak wave 311 
period (Tp); (C) beach slope (β); and, (D) 2% wave runup elevation (R2). 312 

3.2 Training Data for the GP Runup Predictor 313 

To determine the optimum training set size, kernel and model hyperparameters, a number of different 314 

user-defined training set sizes were trialed using the MDA selection routine discussed in Sect. 2.3. The 315 

GP was trained using different amounts of data and hyperparameters were optimized on the validation 316 

data set only. It was found that a training set size of only 5% of the available dataset (training dataset = 317 

416 of 8328 available samples, validation dataset = 3956 samples, testing dataset = 3956 samples) was 318 

required to develop an optimum GP model. Training data sizes beyond this value produced negligible 319 

changes in GP performance but considerable increases in computational demand, similar to findings of 320 

previous work (Goldstein and Coco, 2014; Tinoco et al., 2015). Results presented below discuss the 321 

performance of the GP on the testing dataset which was not used in GP training or validation. 322 
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3.3 Runup Predictor Results 323 

Results of the GP R2 predictor on the 3956 test samples are shown in Fig. 4. This figure plots the mean 324 

GP predictions against corresponding observations of R2. The mean GP prediction performs well on the 325 

test data, with a root-mean-squared-error (RMSE) of 0.18 m and bias (B) of 0.02 m. For comparison, the 326 

commonly used R2 parameterization of Stockdon et al. (2006) tested on the same data has a RMSE of 327 

0.36 m and B of 0.21 m. Despite the relatively accurate performance of the GP on this dataset, there 328 

remains significant scatter in the observed versus predicted R2 in Fig. 4. This is consistent with recent 329 

work by Atkinson et al. (2017) showing that commonly used predictors of R2 always result in scatter. 330 

 331 

 332 

Fig. 4: Observed 2% wave runup (R2) versus the R2 predicted by the Gaussian process model. Root-mean-squared-error (RMSE) is 333 
0.36 m, bias (B) is 0.02 m and squared correlation (r2) is 0.54. 334 

 335 

As discussed in Sect. 1 scatter in runup predictions is likely a result of unresolved processes in the model 336 

such as wave dispersion, wave spectrum, nearshore morphology or a range of other possible processes. 337 

Regardless of the origin, here this scatter (uncertainty) is used to form ensemble predictions. The GP 338 
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developed here not only gives a mean prediction as used in Fig. 4, but it specifies a multivariate Gaussian 339 

distribution from which different random functions that describe the data can be sampled. Random 340 

samples of wave runup from the GP can capture uncertainty around the mean runup prediction (as was 341 

demonstrated in the hypothetical example in Fig. 1D). To assess how well the GP model captures 342 

uncertainty, random samples are successively drawn from the GP and the number of R2 measurements 343 

captured with each new draw are determined. Only 10 random samples drawn from the GP are required 344 

to capture 95% of the scatter in R2 (Fig. 5A). This process of drawing random samples from the GP was 345 

repeated 100 times with results showing that the above is true for any 10 random samples, with an average 346 

capture percentage of 95.7% and range of 94.9% to 96.1% for 10 samples across the 100 trials. As a point 347 

of contrast, Fig. 5B shows how much arbitrary error would need to be added to the mean R2 prediction to 348 

capture scatter about the mean to emulate the uncertainty captured by the GP. It can be seen that the mean 349 

R2 prediction would need to vary by ± 51% to capture 95% of the scatter present in the runup data. This 350 

demonstrates how random models of runup drawn from the GP effectively capture uncertainty in R2 351 

predictions. These randomly drawn R2 models can be used within a larger dune-impact model to produce 352 

an ensemble of dune erosion predictions that includes uncertainty in runup predictions, as demonstrated 353 

in Sect. 4. 354 

 355 

 356 
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 357 

Fig. 5: A) Percent of observed runup values captured within the range of ensemble predictions made by randomly sampling different 358 
runup values from the Gaussian process. Only 10 randomly drawn models can form an ensemble that captures 95% of the scatter 359 
in observed R2 values. B) An experiment showing how much arbitrary error would need to be added to the mean GP runup 360 
prediction in order to capture scatter in R2 observations. The mean GP prediction would have to vary by 51% in order to capture 361 
95% of scatter in R2 observations.   362 
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4 Application of a Gaussian Process Runup Predictor in a Coastal Dune Erosion Model 363 

4.1 Dune Erosion Model 364 

We use the dune erosion model of Larson et al. (2004) as an example of how the GP runup predictor can 365 

be used to create an ensemble of dune erosion predictions, and thus provide probabilistic outcomes with 366 

uncertainty bands needed in coastal management. The dune erosion model is subsequently referred to as 367 

LEH04 and is defined as follows: 368 

 369 

𝑑𝑉 = 4𝐶𝑠(𝑅2 − 𝑧𝑏)
2(

𝑡

𝑇
)          (9) 370 

 371 

Where dV (m3/m) is the volumetric dune erosion per unit width alongshore for a given time step t, zb (m) 372 

is the time-varying dune toe elevation, T (s) is the wave period for that time step, R2 (m) is the 2% runup 373 

exceedance for that time step, and Cs is the transport coefficient. Note that the original equation used a 374 

best-fit relationship to define the runup term, R (see Eq. (36) in Larson et al., 2004) rather than R2. 375 

Subsequent modifications of the LEH04 model have been made to adjust the collision frequency (i.e. the 376 

t/T term; e.g., Palmsten and Holman (2012), Splinter and Palmsten (2012)), however we retain the model 377 

presented in Eq. (9) for the purpose of providing a simple illustrative example. At each time step, dune 378 

volume is eroded in bulk and the dune toe is adjusted along a predefined slope (defined here as the linear 379 

slope between the pre- and post-storm dune toe) so that erosion causes the dune toe to increase in elevation 380 

and recede landward. Dune erosion and dune toe recession only occurs when wave runup (R2) exceeds 381 

the dune toe (i.e., R2 – zb > 0) and cannot progress vertically beyond the maximum runup elevation. When 382 

R2 does not exceed zb, dV = 0.  The GP R2 predictor described in Sect. 3 is used to stochastically 383 

parameterize wave runup in the LEH04 model and form ensembles of dune erosion predictions. The 384 

model is applied to new data not used to train the GP R2 predictor, using detailed observations of dune 385 

erosion caused by a large coastal storm event at Narrabeen Beach, southeast Australia in 2011. 386 
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4.2 June 2011 Storm Data 387 

In June 2011 a large coastal storm event impacted the southeast coast of Australia. This event resulted in 388 

variable alongshore dune erosion at Narrabeen Beach, which was precisely captured by airborne LIDAR 389 

immediately pre-, during, and post-storm by five surveys conducted approximately 24 hours apart. Cross-390 

shore profiles were extracted from the Lidar data at 10 m alongshore intervals as described in detail in 391 

Splinter et al. (2018), resulting in 351 individual profiles (Fig. 6). The June 2011 storm lasted 120 hours. 392 

Hourly wave data was recorded by the Sydney wave rider buoy located in ~80 m water depth directly to 393 

the southeast of Narrabeen Beach. As with the hourly wave data used to develop the GP model of R2 394 

(Sect. 3.1), hourly wave data for each of the 351 profiles for the June 2011 storm was obtained by first 395 

transforming offshore wave data to the nearshore equivalent at 10 m water depth directly offshore of each 396 

profile using the SWAN spectral wave model (Booij et al., 1999), and then reverse shoaling back to 397 

equivalent deep water wave data, to account for the effects of wave refraction and attenuation caused by 398 

the distinctly curved Narrabeen embayment. The tidal range during the storm event was measured in-situ 399 

at the Fort Denison Tide Gauge (located within Sydney Harbour approximately 16 km south of 400 

Narrabeen) as 1.58 m (mean spring tidal range at Narrabeen is 1.6 m). As can be seen in Fig. 6 the wave 401 

conditions for the June 2011 storm lie within the range of the training dataset used to develop the GP 402 

runup predictor. The hydrodynamic time series and airborne LIDAR observations of dune change are 403 

used to demonstrate how the LEH04 model can be used with the GP predictor of runup to generate 404 

stochastic parameterizations and create probabilistic model ensembles (Eq. (9)). 405 
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 406 

Fig. 6: June 2011 storm data. A) Offshore Hs and Tp with vertical dashed lines indicating the time of the LIDAR surveys, B) Measured 407 
(pre vs post storm) dune erosion volumes for the 351 profile transects extracted from LIDAR data, C) Example pre- (blue) and post-408 
storm (red) profile cross sections showing dune toes (coloured circles) and dune erosion volume (grey shading). 409 

For each of the 351 available profiles, the pre-, during and post-storm dune toe positions were defined as 410 

the local maxima of curvature of the beach profile following the method of Stockdon et al. (2007). Dune 411 

erosion at each profile was then defined as the difference in subaerial beach volume landward of the pre-412 

storm dune toe, as shown in Fig. 6C. Of the 351 profiles, only 117 had storm driven dune erosion (Fig. 413 

6B). For the example demonstration presented here, only profiles for which the post-storm dune toe 414 

elevation was at the same or higher elevation than the pre-storm dune toe are considered; which is a basic 415 

assumption of the LEH04 model. Of the 117 profiles with storm erosion, 40 profiles met these criteria. 416 



23 

 

For each of these profiles, the linear slope between the pre- and post-storm dune toe was used to project 417 

the dune erosion calculated using the LEH04 model. 418 

 419 

The LEH04 dune erosion model (Eq. (9)) has a single tuneable parameter, the transport coefficient Cs. 420 

There is ambiguity in the literature regarding the value of Cs. Larson et al. (2004) developed an empirical 421 

equation to relate Cs to wave height (Hrms) and grain size (D50) using experimental data. Values ranged 422 

from 1x10-5 to 1x10-1, and Larson et al. (2004) used 1.7 x 10-4 based on field data from Birkemeier et 423 

al. (1988). Palmsten and Holman (2012) used LEH04 to model dune erosion observed in a large wave 424 

tank experiment conducted at the O.H. Hinsdale Wave Research Laboratory at Oregon State University. 425 

The model was shown to accurately reproduce dune erosion when applied in hourly time steps using a Cs 426 

of 1.34 x 10-3, based on the empirical equation determined by Larson et al. (2004).  Mull and Ruggiero 427 

(2014) used values of 1.7 x 10-4 and 1.34 x 10-3 as lower and upper bounds of Cs to model dune erosion 428 

caused by a large storm event on the Pacific Northwest Coast of the USA and the laboratory experiment 429 

used by Palmsten and Holman (2012). For the dune erosion experiment, the value of 1.7 x 10-4 was found 430 

to predict dune erosion volumes closest to the observed erosion when applied in a single time step, with 431 

an optimum value of 2.98 x 10-4. Splinter and Palmsten (2012) found a best fit Cs of 4 x 10-5 in an 432 

application to modelling dune erosion caused by a large storm event that occurred on the Gold Coast, 433 

Australia. Ranasinghe et al. (2012) found a Cs value of 1.5 x 10−3 in an application at Narrabeen Beach, 434 

Australia. It is noted that Cs values in these studies are influenced by the time step used in the model and 435 

the exact definition of wave runup, R, used (Larson et al., 2004; Mull and Ruggiero, 2014; Palmsten and 436 

Holman, 2012; Splinter and Palmsten, 2012). In practice, Cs could be optimized to fit any particular 437 

dataset. However, for predictive applications the optimum Cs value may not be known in advance, since 438 

it is unclear if subsequent storms at a given location will be well predicted using previously optimized Cs 439 

values.  A key goal of this work is to determine if using stochastic parameterizations to generate 440 

ensembles that predict a range of dune erosion (based on uncertainty in the runup parameterization) can 441 

still capture observed dune erosion even if the optimum Cs value is not known in advance. As such, a Cs 442 

value of 1.5 x 10−3 is used in this example application based on previous work at Narrabeen Beach by 443 
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Ranasinghe et al. (2012). Sensitivity of model results to the choice of Cs are further discussed in Sect. 444 

4.3.  445 

 446 

An example at a single profile (profile 141, located approximately half-way up the Narrabeen embayment 447 

as shown in Fig. 6B) of time-varying ensemble dune erosion predictions is provided in Fig. 7. It was 448 

previously shown in Fig. 5 that only 10 random samples drawn from the GP R2 predictor were required 449 

to capture 95% of the scatter in the R2 data used to develop and test the GP. However, it is trivial to draw 450 

many more samples than this from the GP - for example, drawing 10,000 samples takes less than one 451 

second on a standard desktop computer. Therefore, to explore a large range of possible runup scenarios 452 

during the 120-hour storm event, 10,000 different runup time series are drawn from the GP and used to 453 

run LEH04 at hourly intervals, thus producing 10,000 model results of dune erosion. The effect of using 454 

different ensemble sizes is explored in Sect. 4.3. Fig. 7A shows the time-varying distribution of the runup 455 

models (blue) used to force LEH04 along with the time-varying prediction distribution of dune toe 456 

elevations (grey) throughout the 120-hour storm event. To interpret model output probabilistically, the 457 

mean of the ensemble is plotted, along with intervals capturing 66%, 90%, and 99% of the ensemble 458 

output. These intervals are consistent with those used in IPCC for climate change predictions 459 

(Mastrandrea et al., 2010) and in the context of the model results presented here, they represent varying 460 

levels of confidence in the model output. For example, there is high confidence that the real dune erosion 461 

will fall within the 66% ensemble prediction range.  Fig. 7B shows the time-varying predicted distribution 462 

of dune erosion volumes from the 10,000 LEH04 runs. It can be seen that while the mean value of the 463 

ensemble predictions deviates slightly from the observed dune erosion, the observed erosion is still 464 

captured well within the 66% envelope of predictions. 465 
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 466 

Fig. 7: Example of LEH04 used with the Gaussian process R2 predictor to form an ensemble of dune erosion predictions. 10,000 467 
runup models are drawn from the Gaussian process and used to force the LEH04 model. A) Total water level (measured water level 468 
+ R2; blue) and dune toe elevation (grey) for the 120-hour storm event. Bold colored line is the mean of the ensemble and shaded 469 
areas represent the regions captured by 66%, 90% and 99% of the ensemble predictions. An example of just the R2 prediction (no 470 
measured water level) from the Gaussian process is shown in the magenta line. Pink dots denote the observed dune toe elevation 471 
throughout the storm event.  B) The corresponding ensemble of dune erosion predictions. 472 

Pre- and post-storm dune erosion results for the 40 profiles using 10,000 ensemble members and Cs of 473 

1.5 x 10-3 are shown in Fig. 8. The squared-correlation (r2) for the observed and predicted dune erosion 474 

volumes is 0.85. Many of the profiles experienced only minor dune erosion (< 2.5 m3/m) and can be seen 475 

to be well predicted by the mean of the ensemble predictions. In contrast, the ensemble mean can be seen 476 

to under-predict dune erosion at profiles where high erosion volumes were observed (profiles 29 – 34 in 477 

Fig. 8), with some profiles not even captured by the uncertainty of the ensemble. However, the ensemble 478 

range of predictions for these particular profiles also has a large spread, indicative of high uncertainty in 479 
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predictions and the potential for high erosion to occur. It should be noted that the results presented in Fig. 480 

8 are based on an assumed (i.e., non-optimized) Cs value of 1.5 x 10-3. Better prediction of large erosion 481 

events could potentially be achieved by increasing Cs or giving greater weighting to these events during 482 

calibration, but at the cost of over-predicting the smaller events. The exact effect of varying Cs is 483 

quantified in Sect. 4.3. Importantly, Fig. 8 demonstrates that even with a non-optimized Cs, uncertainty 484 

in the GP predictions can provide useful information about the potential for dune erosion, even if the 485 

mean dune erosion prediction deviates from the observation; a key advantage of the GP approach over a 486 

deterministic approach. 487 

 488 

 489 

Fig. 8: Observed (pink dots) and predicted (black dots) dune erosion volumes for the 40 modelled profiles, using 10,000 runup models 490 
drawn from the Gaussian process and used to force the LEH04 model. Note that the 40 profiles shown are not uniformly spaced 491 
along the 3.5 km Narrabeen embayment. The black dots represent the ensemble mean prediction for each profile, while the shaded 492 
areas represent the regions captured by 66%, 90% and 99% of the ensemble predictions. 493 

4.3 The Effect of Cs and Ensemble Size on Dune Erosion  494 

In Sect. 4.2, the application of the GP runup predictor within the LEH04 model to produce an ensemble 495 

of dune erosion predictions was based on 10,000 ensemble members and a Cs value of 1.5 x 10-3. The 496 
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sensitivity of results to the number of members in the ensemble and the value of the tunable parameter Cs 497 

in Eq. (9) is presented in Fig. 9. The mean absolute error (MAE) between the mean ensemble dune erosion 498 

predictions and the observed dune erosion, averaged across all 40 profiles, varies for R2 ensembles of 5, 499 

10, 20, 100, 1000, and 10,000 members and Cs values ranging from 10-5 to 10-1 (Fig. 9).  As can be seen 500 

in Fig. 9A and summarized in Table 1, the lowest MAE for the differing ensemble sizes is similar, ranging 501 

from 1.50 to 1.64 m3/m, suggesting that the number of ensemble members does not have a significant 502 

impact on the resultant mean prediction. The lowest MAE for the different ensemble sizes corresponds to 503 

Cs values between 2.8 x 10-3 (10,000 ensemble members) and 4.1 x 10-3 (5 ensemble members); 504 

reasonably consistent with the value of 1.5 x 10-3 previously reported by Ranasinghe et al. (2012) for 505 

Narrabeen Beach and within the range of Cs values presented in Larson et al. (2004).  506 

 507 

The key utility to using a data-driven GP predictor to produce ensembles is that a range of predictions at 508 

every location is provided as opposed to a single erosion volume. The ensemble range provides an 509 

indication of uncertainty in predictions, which can be highly useful for coastal engineers and managers 510 

taking a risk-based approach to coastal hazard management. Fig. 9B-D displays the percentage of dune 511 

erosion observations from the 40 profiles captured within ensemble predictions for Cs values ranging 512 

from 10-5 to 10-1. It can be seen that a high proportion of dune erosion observations are captured within 513 

the 66%, 90% and 99% ensemble envelope across several orders of magnitude Cs. While the main purpose 514 

of using ensemble runup predictions within LEH04 is to incorporate uncertainty in the runup prediction, 515 

this result demonstrates that the ensemble approach is less sensitive to the choice of Cs than a deterministic 516 

model and so can be useful for forecasting with non-optimized model parameters.  517 

 518 

Results in Fig. 9 and Table 1 demonstrate that there is relatively little difference in model performance 519 

when more than 10 to 100 ensemble members are used; consistent with results presented previously in 520 

Fig. 5 that showed that only 10 random samples drawn from the GP R2 predictor were required to capture 521 

95% of the scatter in the R2 data used to develop and test the GP. This suggests that the GP approach 522 

efficiently captures scatter (uncertainty) in runup predictions and subsequently, dune erosion predictions, 523 

requiring on the order of 10 samples; significantly less than the 103 – 106 runs typically used in Monte 524 
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Carlo simulations to develop probabilistic predictions (e.g., Callaghan et al., 2008; Li et al., 2013; 525 

Ranasinghe et al., 2012). 526 

 527 
Fig. 9: Results of the stochastic parameterization methodology for R2 ensembles of 5, 10, 20, 100, 1000, and 10,000 members and Cs 528 
values ranging from 10-5 to 10-1. A) The mean absolute error (MAE) between the median ensemble dune erosion predictions and the 529 
observed dune erosion averaged across all 40 profiles. B), C) and D) show the percentage of dune erosion observations that fall 530 
within the 99%, 90% and 66% ensemble prediction ranges respectively.  531 
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Table 1: Quantitative summary of Fig. 9, showing the optimum Cs value for differing ensemble sizes, along with the associated mean-532 
absolute-error (MAE) and percent of the 40 dune erosion observations captured by the 66%, 90% and 99% ensemble prediction 533 
range. 534 

Ensemble 

Members 

Optimum 

Cs 

MAE 

(m3/m) 
r2 

Percent 

Captured in 

66% 

Ensemble 

Range (%) 

Percent 

Captured in 

90% 

Ensemble 

Range (%) 

Percent 

Captured in 

99% 

Ensemble 

Range (%) 

5 4.1 x 10-3 1.59 0.86 45 57 65 

10 3.4 x 10-3 1.50 0.87 55 75 78 

20 3.4 x 10-3 1.54 0.86 62 78 88 

100 3.3 x 10-3 1.61 0.86 68 88 100 

1000 2.8 x 10-3 1.64 0.86 65 88 100 

10,000 2.8 x 10-3 1.64 0.86 65 88 100 

 535 

 536 
  537 
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5 Discussion 538 

5.1 Runup Predictors 539 

Studies of commonly used deterministic runup parameterizations such as those proposed by Hunt (1959), 540 

Holman (1986) and Stockdon et al. (2006) amongst others, show that these parametrizations are not 541 

universally applicable and there remains no perfect predictor of wave runup on beaches (Atkinson et al., 542 

2017; Passarella et al., 2018a; Power et al., 2018). This suggests that the available parametrizations do 543 

not fully capture all the relevant processes controlling wave runup on beaches (Power et al., 2018). Recent 544 

work has used ensemble and data-driven methods to account for unresolved factors and complexity in 545 

runup processes. For example, Atkinson et al. (2017) developed a ‘model-of-models’ by fitting a least-546 

squares line to the predictions of several runup parameterizations. Power et al. (2018) used a data-driven, 547 

deterministic, Gene-Expression Programming model to predict wave runup against a large dataset of 548 

runup observations. Both of these approaches led to improved predictions, when compared to 549 

conventional runup parameterizations, of wave runup on the datasets tested in these studies.  550 

 551 

The work presented in this study used a data-driven Gaussian process (GP) approach to develop a 552 

probabilistic runup predictor. While the mean predictions from the GP predictor developed in this study 553 

using high-resolution LIDAR data of wave runup were accurate (RMSE = 0.18 m) and better than those 554 

provided by the Stockdon et al. (2006) formula tested on the same data (RMSE = 0.36 m), the key 555 

advantage of the GP approach over deterministic approaches is that probabilistic predictions are output 556 

that are specifically derived from data and implicitly account for unresolved processes and uncertainty in 557 

runup predictions. Previous work has similarly used GPs for efficiently and accurately quantifying 558 

uncertainty in other environmental applications (e.g., Holman et al., 2014; Kupilik et al., 2018; Reggente 559 

et al., 2014). While alternative approaches are available for generating probabilistic predictions, such as 560 

Monte Carlo simulations (e.g., Callaghan et al., 2013), the GP approach offers a method of deriving 561 

uncertainty explicitly from data, requires no deterministic equations, and is computationally efficient (i.e., 562 

as discussed in Sect. 4.3, drawing 10,000 samples of 120-hour runup time series on a standard desktop 563 

computer took less than one second). However, as discussed in Sect. 2.3, when developing a GP, or any 564 
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machine learning model, the training data should include the full range of possible variability in the data 565 

to be modelled in order to avoid extrapolation. A limitation of using this data-driven approach for runup 566 

prediction is that it can be difficult to acquire a training dataset that captures all possible variability in the 567 

system, from, for example, longer-term trends in the wave climate, extreme events or a potentially 568 

changing wave climate in the future (Semedo et al., 2012). 569 

5.2 Including Uncertainty in Dune Erosion Models 570 

Uncertainty in wave runup predictions within dune-impact models can result in significantly varied 571 

predictions of dune erosion. For example, the model of Larson et al. (2004) used in this study only predicts 572 

dune erosion if runup elevation exceeds the dune toe elevation and predicts a non-linear relationship 573 

between runup that exceeds the dune toe and resultant dune erosion. Hence, if wave runup predictions are 574 

biased too low then no dune erosion will be predicted, and if wave runup is predicted too high then dune 575 

erosion may be significantly over predicted. Ensemble modelling has become standard practice in many 576 

areas of weather and climate modelling (Bauer et al., 2015), hydrological modelling (Cloke and 577 

Pappenberger, 2009), and more recently has been applied to coastal problems such as the prediction of 578 

cliff retreat (Limber et al., 2018) as a method of handling prediction uncertainty. While using a single 579 

deterministic model is computationally simple and provides one solution for a given set of input 580 

conditions, model ensembles provide a range of predictions that can better capture the variety of 581 

mechanisms and stochasticity within a coastal system. The result is typically improved skill  over 582 

deterministic models (Atkinson et al., 2017; Limber et al., 2018) and a natural method of providing 583 

uncertainty with predictions.  584 

 585 

As a quantitative comparison, Splinter et al. (2018) applied a modified version of the LEH04 model to 586 

the same June 2011 storm dataset used in the work presented here with a modified expression for the 587 

collision frequency (i.e. the t/T term in Eq. (9)) based on work by Palmsten and Holman (2012). The 588 

parameterization of Stockdon et al. (2006) was used to estimate R2 in the model. The model was forced 589 

hourly over the course of the storm, updating the dune toe, recession slope, and profiles based on each 590 

daily LIDAR survey. Based on only the 40 profiles used in the present study, results from Splinter et al. 591 
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(2018) showed that the deterministic LEH04 approach reproduced 68% (r2 = 0.68) of the observed 592 

variability in dune erosion. As shown in Table 1, the simple LEH04 model (Eq. (9)) applied here using 593 

the GP runup predictor to generate ensemble prediction reproduced ~85% (based on the ensemble mean) 594 

of the observed variability in dune erosion for the 40 profiles. While there are some discrepancies in the 595 

two modelling approaches, the ensemble approach clearly has an appreciable increase in skill over the 596 

deterministic approach; attributed here to using a runup predictor trained on local runup data, and the 597 

ensemble modelling approach. However, a major advantage of the ensemble approach over the 598 

deterministic approach is the provision of prediction uncertainty (e.g., Fig. 8). While the mean ensemble 599 

prediction is not 100% accurate, Table 1 shows that using just 100 samples can capture all the observed 600 

variability in dune erosion within the ensemble output.  601 

 602 

The GP approach is a novel approach to building model ensembles to capture uncertainty. Previous work 603 

modelling beach and dune erosion has successfully used Monte Carlo methods, which randomly vary 604 

model inputs within many thousands of model iterations, to produce ensembles and probabilistic erosion 605 

predictions (e.g., Callaghan et al., 2008; Li et al., 2013; Ranasinghe et al., 2012). As discussed earlier in 606 

Sect. 4.3, the GP approach differs to Monte Carlo in that it explicitly quantifies uncertainty directly from 607 

data, does not use deterministic equations, and can be computationally efficient.  608 
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6 Conclusion 609 

For coastal managers, the accurate prediction of wave runup as well as dune erosion is critical for 610 

characterizing the vulnerability of coastlines to wave-induced flooding, erosion of dune systems, and 611 

wave impacts on adjacent coastal infrastructure. While many formulations for wave runup have been 612 

proposed over the years, none have proven to accurately predict runup over a wide range of conditions 613 

and sites of interest. In this contribution, a Gaussian process (GP) was used with over 8000 high-resolution 614 

LIDAR-derived wave runup observations were used to develop a probabilistically parametrization of 615 

wave runup that quantify uncertainty in runup predictions. The mean GP prediction performed well on 616 

unseen data, with a RMSE of 0.18 m, a significant improvement over the commonly used R2 617 

parameterization of Stockdon et al. (2006) (RMSE of 0.36 m) used on the same data. Further, only 10 618 

randomly drawn models from the probabilistic GP distribution were needed to form an ensemble that 619 

captured 95% of the scatter in the test data.  620 

 621 

Coastal dune-impact models offer a method of predicting dune erosion deterministically. As an example 622 

application of how the GP runup predictor can be used in geomorphic systems, the uncertainty in the 623 

runup parameterization was propagated through a deterministic dune erosion model to generate ensemble 624 

model predictions and provide prediction uncertainty. The hybrid dune erosion model performed well on 625 

the test data, with a squared-correlation (r2) between the observed and predicted dune erosion volumes of 626 

0.85. Importantly, the probabilistic output provided uncertainty bands of the expected erosion volumes 627 

which is a key advantage over deterministic approaches. Compared to traditional methods of producing 628 

probabilistic predictions such as Monte Carlo, the GP approach has the advantage of learning uncertainty 629 

directly from observed data, it requires no deterministic equations, and is computationally efficient. 630 

 631 

This work is an example of how a machine learning model such as a GP can profitably be integrated into 632 

coastal morphodynamic models (Goldstein and Coco, 2015) to provide probabilistic predictions for 633 

nonlinear, multidimensional processes and drive ensemble forecasts. Approaches combining machine 634 

learning methods with traditional coastal science and management models present a promising area for 635 

furthering coastal morphodynamic research. Future work is focused on using more data and additional 636 
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inputs, such as offshore bar morphology and wave spectra, to improve the GP runup predictor developed 637 

here, testing it at different locations and integrating it into a real-time coastal erosion forecasting system.  638 
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The data and code used to develop the Gaussian Process runup predictor in this manuscript are publicly 640 

available at https://github.com/TomasBeuzen/BeuzenEtAl_GP_Paper.  641 
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