Articles | Volume 18, issue 7
Nat. Hazards Earth Syst. Sci., 18, 1957–1968, 2018
https://doi.org/10.5194/nhess-18-1957-2018
Nat. Hazards Earth Syst. Sci., 18, 1957–1968, 2018
https://doi.org/10.5194/nhess-18-1957-2018

Research article 16 Jul 2018

Research article | 16 Jul 2018

New experimental diagnostics in combustion of forest fuels: microscale appreciation for a macroscale approach

Dominique Cancellieri et al.

Related authors

Evaluation of wildland fire smoke plume dynamics and aerosol load using UV scanning lidar and fire–atmosphere modelling during the Mediterranean Letia 2010 experiment
V. Leroy-Cancellieri, P. Augustin, J. B. Filippi, C. Mari, M. Fourmentin, F. Bosseur, F. Morandini, and H. Delbarre
Nat. Hazards Earth Syst. Sci., 14, 509–523, https://doi.org/10.5194/nhess-14-509-2014,https://doi.org/10.5194/nhess-14-509-2014, 2014

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Examining the operational use of avalanche problems with decision trees and model-generated weather and snowpack variables
Simon Horton, Moses Towell, and Pascal Haegeli
Nat. Hazards Earth Syst. Sci., 20, 3551–3576, https://doi.org/10.5194/nhess-20-3551-2020,https://doi.org/10.5194/nhess-20-3551-2020, 2020
Short summary
A classification scheme to determine wildfires from the satellite record in the cool grasslands of southern Canada: considerations for fire occurrence modelling and warning criteria
Dan K. Thompson and Kimberly Morrison
Nat. Hazards Earth Syst. Sci., 20, 3439–3454, https://doi.org/10.5194/nhess-20-3439-2020,https://doi.org/10.5194/nhess-20-3439-2020, 2020
Short summary
Assessments of land subsidence along the Rizhao–Lankao high-speed railway at Heze, China, between 2015 and 2019 with Sentinel-1 data
Chuanguang Zhu, Wenhao Wu, Mahdi Motagh, Liya Zhang, Zongli Jiang, and Sichun Long
Nat. Hazards Earth Syst. Sci., 20, 3399–3411, https://doi.org/10.5194/nhess-20-3399-2020,https://doi.org/10.5194/nhess-20-3399-2020, 2020
Short summary
Tailings-flow runout analysis: examining the applicability of a semi-physical area–volume relationship using a novel database
Negar Ghahramani, Andrew Mitchell, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, and W. Andy Take
Nat. Hazards Earth Syst. Sci., 20, 3425–3438, https://doi.org/10.5194/nhess-20-3425-2020,https://doi.org/10.5194/nhess-20-3425-2020, 2020
Short summary
Experimental assessment of the relationship between rainfall intensity and sinkholes caused by damaged sewer pipes
Tae-Young Kwak, Sang-Inn Woo, Choong-Ki Chung, and Joonyoung Kim
Nat. Hazards Earth Syst. Sci., 20, 3343–3359, https://doi.org/10.5194/nhess-20-3343-2020,https://doi.org/10.5194/nhess-20-3343-2020, 2020
Short summary

Cited articles

Bartoli, P., Simeoni, A., Biteau, H., Torero, J. L., and Santoni, P. A.: Determination of the main parameters influencing forest fuel combustion dynamics, Fire Saf. J., 46, 27–33, https://doi.org/10.1016/j.firesaf.2010.05.002, 2011. 
Boulet, P., Parent, G., Acem, Z., Collin, A., and Séro-Guillaume, O.: On the emission of radiation by flames and corresponding absorption by vegetation in forest fires, Fire Saf. J., 46, 21–26, https://doi.org/10.1016/j.firesaf.2010.03.006, 2011. 
Branca, C. and Di Blasi, C.: Global interinsic kinetics of wood oxidation, Fuel, 83, 81–87, https://doi.org/10.1016/S0016-2361(03)00220-5, 2004. 
Burrows, N. D.: Flame residence times and rates of weight loss of eucalypt forest fuel particles, Int. J. Wildland Fire, 10, 137–143, https://doi.org/10.1071/wf01005, 2001. 
Cancellieri, D., Leoni, E., and Rossi, J. L.: Kinetics of the thermal degradation of Erica arborea by DSC: Hybrid kinetic method, Thermochim. Acta, 438, 41–50, https://doi.org/10.1016/j.tca.2005.07.013, 2005. 
Download
Short summary
The technology presented in this paper is based on a completely new approach wherein the development of a new field mass loss device combined with recent progress in the understanding of its behaviour achieves never before recorded data. It is the first time that the kinetics of decomposition of biomass have been validated under real wildland fire conditions, thus ensuring reliable characterisation of source terms.
Altmetrics
Final-revised paper
Preprint