Articles | Volume 17, issue 12
https://doi.org/10.5194/nhess-17-2181-2017
https://doi.org/10.5194/nhess-17-2181-2017
Research article
 | 
07 Dec 2017
Research article |  | 07 Dec 2017

Landslide displacement prediction using the GA-LSSVM model and time series analysis: a case study of Three Gorges Reservoir, China

Tao Wen, Huiming Tang, Yankun Wang, Chengyuan Lin, and Chengren Xiong

Related authors

Permafrost Stability Mapping on the Tibetan Plateau by Integrating Time-series InSAR and Random Forest Method
Fumeng Zhao, Wenping Gong, Tianhe Ren, Jun Chen, Huiming Tang, and Tianzheng Li
The Cryosphere Discuss., https://doi.org/10.5194/tc-2022-9,https://doi.org/10.5194/tc-2022-9, 2022
Revised manuscript not accepted
Short summary
A model for interpreting the deformation mechanism of reservoir landslides in the Three Gorges Reservoir area, China
Zongxing Zou, Huiming Tang, Robert E. Criss, Xinli Hu, Chengren Xiong, Qiong Wu, and Yi Yuan
Nat. Hazards Earth Syst. Sci., 21, 517–532, https://doi.org/10.5194/nhess-21-517-2021,https://doi.org/10.5194/nhess-21-517-2021, 2021
Short summary

Related subject area

Landslides and Debris Flows Hazards
Temporal clustering of precipitation for detection of potential landslides
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024,https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024,https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024,https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024,https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Addressing class imbalance in soil movement predictions
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024,https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary

Cited articles

Abdi, M. J. and Giveki, D.: Automatic detection of erythemato-squamous diseases using PSO-SVM based on association rules, Eng. Appl. Artif. Intel., 26, 603–608, https://doi.org/10.1016/j.engappai.2012.01.017, 2013.
Ahmed, B.: Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh, Landslides, 6, 1077–1095, https://doi.org/10.1007/s10346-014-0521-x, 2013.
Ahmadi, M. A., Zendehboudi, S., Lohi, A., Elkamel, A., and Chatzis, I.: Reservoir permeability prediction by neural networks combined with hybrid genetic algorithm and particle swarm optimization, Geophys. Prosp., 61, 582–598, https://doi.org/10.1111/j.1365-2478.2012.01080.x, 2013.
Altınel, B., Can Ganiz, M., and Diri, B.: A corpus-based semantic kernel for text classification by using meaning values of terms, Eng. Appl. Artif. Intel., 43, 54–66, https://doi.org/10.1016/j.engappai.2015.03.015, 2015.
Brockwell, P. J. and Davis, R. A.: Time series: theory and methods, Springer Science & Business Media, 340–341, 2013.
Download
Short summary
Landslide displacement prediction is one of the focuses of landslide research. In this paper, time series analysis was used to decompose the cumulative displacement of landslide into a trend component and a periodic component. Then LSSVM model and GA were used to predict landslide displacement. The results show that the GA-LSSVM model can be effectively used to predict landslide displacement and reflect the corresponding relationships between the major influencing factors and the displacement.
Altmetrics
Final-revised paper
Preprint