Articles | Volume 17, issue 12
https://doi.org/10.5194/nhess-17-2181-2017
https://doi.org/10.5194/nhess-17-2181-2017
Research article
 | 
07 Dec 2017
Research article |  | 07 Dec 2017

Landslide displacement prediction using the GA-LSSVM model and time series analysis: a case study of Three Gorges Reservoir, China

Tao Wen, Huiming Tang, Yankun Wang, Chengyuan Lin, and Chengren Xiong

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
ED: Reconsider after major revisions (further review by editor and referees) (23 Oct 2017) by Thomas Glade
AR by HUIMING TNAG on behalf of the Authors (28 Oct 2017)  Author's response   Manuscript 
ED: Publish as is (02 Nov 2017) by Thomas Glade
AR by HUIMING TNAG on behalf of the Authors (03 Nov 2017)  Manuscript 
Download
Short summary
Landslide displacement prediction is one of the focuses of landslide research. In this paper, time series analysis was used to decompose the cumulative displacement of landslide into a trend component and a periodic component. Then LSSVM model and GA were used to predict landslide displacement. The results show that the GA-LSSVM model can be effectively used to predict landslide displacement and reflect the corresponding relationships between the major influencing factors and the displacement.
Altmetrics
Final-revised paper
Preprint